Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 1448

Full-Text Articles in Nuclear Engineering

Calculation And Tabulation Of Efficiencies For Tungsten Foil Positron Moderators, R. Alsulami, M. Albarqi, S. Jaradat, Shoaib Usman, Joseph T. Graham Aug 2019

Calculation And Tabulation Of Efficiencies For Tungsten Foil Positron Moderators, R. Alsulami, M. Albarqi, S. Jaradat, Shoaib Usman, Joseph T. Graham

Shoaib Usman

Monte Carlo radiation transport simulations were used to calculate the positron stopping profiles in tungsten positron moderator foils. Stopping profiles were numerically integrated with efficiency kernels derived from Green's function solutions of the 3D diffusion equation to determine the moderation efficiency in both the backscattering and transmission geometries. Stopping profiles and efficiencies were calculated for positron energies from 10 keV to 10 MeV and incident angles from 0° to 75°. The resulting efficiencies agreed with other calculated and measured values in the literature, especially when similar values of the positron diffusion length and surface emission branching ratio were used ...


Calculation And Tabulation Of Efficiencies For Tungsten Foil Positron Moderators, R. Alsulami, M. Albarqi, S. Jaradat, Shoaib Usman, Joseph T. Graham Aug 2019

Calculation And Tabulation Of Efficiencies For Tungsten Foil Positron Moderators, R. Alsulami, M. Albarqi, S. Jaradat, Shoaib Usman, Joseph T. Graham

Joseph T. Graham

Monte Carlo radiation transport simulations were used to calculate the positron stopping profiles in tungsten positron moderator foils. Stopping profiles were numerically integrated with efficiency kernels derived from Green's function solutions of the 3D diffusion equation to determine the moderation efficiency in both the backscattering and transmission geometries. Stopping profiles and efficiencies were calculated for positron energies from 10 keV to 10 MeV and incident angles from 0° to 75°. The resulting efficiencies agreed with other calculated and measured values in the literature, especially when similar values of the positron diffusion length and surface emission branching ratio were used ...


Isotopically-Resolved Neutron Cross Sections As Probe Of The Nuclear Optical Potential, Cole Davis Pruitt May 2019

Isotopically-Resolved Neutron Cross Sections As Probe Of The Nuclear Optical Potential, Cole Davis Pruitt

Arts & Sciences Electronic Theses and Dissertations

Neutron scattering experiments provide direct access to the forces experienced by nucleons in the nuclear environment. Due to the experimental difficulty of cross section measurements with neutrons, isotopically-resolved neutron scattering cross sections are sorely needed as inputs for many nuclear models. This dissertation presents the results from a campaign of isotope-specific neutron total cross section measurements on 16,18O, 58,64Ni, 112,124Sn, and 103Rh from 3-450 MeV and elastic scattering differential cross section measurements on 112,nat,124Sn at 11 and 17 MeV. Equipped with these new data and with computational improvements to the Dispersive Optical Model (DOM), we ...


Calculation And Tabulation Of Efficiencies For Tungsten Foil Positron Moderators, R. Alsulami, M. Albarqi, S. Jaradat, Shoaib Usman, Joseph T. Graham May 2019

Calculation And Tabulation Of Efficiencies For Tungsten Foil Positron Moderators, R. Alsulami, M. Albarqi, S. Jaradat, Shoaib Usman, Joseph T. Graham

Mining and Nuclear Engineering Faculty Research & Creative Works

Monte Carlo radiation transport simulations were used to calculate the positron stopping profiles in tungsten positron moderator foils. Stopping profiles were numerically integrated with efficiency kernels derived from Green's function solutions of the 3D diffusion equation to determine the moderation efficiency in both the backscattering and transmission geometries. Stopping profiles and efficiencies were calculated for positron energies from 10 keV to 10 MeV and incident angles from 0° to 75°. The resulting efficiencies agreed with other calculated and measured values in the literature, especially when similar values of the positron diffusion length and surface emission branching ratio were used ...


Tertiary Safety System For Nuclear Spent Fuel Pool, Jonathan Farmer, Amanda Bachmann, Taylor Adams, Eissa Altalahlah, Trina Garrett, Jillian Newmyer, Drew Shayotovich May 2019

Tertiary Safety System For Nuclear Spent Fuel Pool, Jonathan Farmer, Amanda Bachmann, Taylor Adams, Eissa Altalahlah, Trina Garrett, Jillian Newmyer, Drew Shayotovich

Chancellor’s Honors Program Projects

No abstract provided.


Manufacture Of Dual Sided Microstructured Semiconductor Neutron Detectors, Jared Medina Apr 2019

Manufacture Of Dual Sided Microstructured Semiconductor Neutron Detectors, Jared Medina

Kansas State University Undergraduate Research Conference

The world is in need of a new way to detect neutrons. The best current detectors rely on 3He, which is in short supply. The 3He detectors are extremely expensive. The goal of this project is to produce inexpensive and robust detectors that do not rely on 3He. Instead of using gas, the Dual Sided Microstructured Neutron Detectors (DS-MSNDs) are made from a semiconductor material. The DS-MSNDs have been simulated to have up to 70% efficiency, which is comparable to the 3He detectors efficiency of about 80%. The DS-MSNDs have micro-trenches that are back filled with ...


Modeling Complex Oxides: Thermochemical Behavior Of Nepheline-Forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O And Hollandite-Forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O Systems, Stephen A. Utlak Apr 2019

Modeling Complex Oxides: Thermochemical Behavior Of Nepheline-Forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O And Hollandite-Forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O Systems, Stephen A. Utlak

Theses and Dissertations

High concentrations of Na2O and Al2O3 in the liquid high-level radioactive waste (HLW) stored at the Hanford Site can cause nepheline (NaAlSiO4) to precipitate in a vitrified monolithic waste form upon cooling. Nepheline phase formation removes glass- former SiO2 and -modifier Al2O3 from the immobilization matrix in greater proportion to alkalis, which can reduce glass durability and consequently increase the leach rate of radionuclides into the surrounding environment.

Current uncertainty in defining the HLW glass composition region prone to precipitating nepheline necessitates targeting a conservative waste loading, which raises operational costs by extending the liquid radioactive waste disposal mission and ...


Modeling Complex Oxides: Thermochemical Behavior Of Nepheline-Forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O And Hollandite-Forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O Systems, Stephen A. Utlak Apr 2019

Modeling Complex Oxides: Thermochemical Behavior Of Nepheline-Forming Na-Al-Si-B-K-Li-Ca-Mg-Fe-O And Hollandite-Forming Ba-Cs-Ti-Cr-Al-Fe- Ga-O Systems, Stephen A. Utlak

Theses and Dissertations

High concentrations of Na2O and Al2O3 in the liquid high-level radioactive waste (HLW) stored at the Hanford Site can cause nepheline (NaAlSiO4) to precipitate in a vitrified monolithic waste form upon cooling. Nepheline phase formation removes glass- former SiO2 and -modifier Al2O3 from the immobilization matrix in greater proportion to alkalis, which can reduce glass durability and consequently increase the leach rate of radionuclides into the surrounding environment.

Current uncertainty in defining the HLW glass composition region prone to precipitating nepheline necessitates targeting a conservative waste loading, which raises operational costs by extending the liquid radioactive waste disposal mission and ...


Investigation Of The Coupled Nuclear, Thermal-Hydraulic, And Thermomechanical Response Of A Natural Circulation Research Reactor Under Severe Reactivity-Initiated Accident Transients, Darren G. Talley Mar 2019

Investigation Of The Coupled Nuclear, Thermal-Hydraulic, And Thermomechanical Response Of A Natural Circulation Research Reactor Under Severe Reactivity-Initiated Accident Transients, Darren G. Talley

Mechanical Engineering ETDs

Research reactors play an important role in higher education, scientific research, and medical radioisotope production around the world. It is thus important to ensure the safety of facility workers and the public. This work presents a new reactor transient analysis code, referred to as Razorback, which computes the coupled reactor kinetics, fuel element heat transfer, fuel element thermal expansion and thermal stress, and thermal-hydraulic response of a natural circulation research reactor. The code was developed for the evaluation of large rapid reactivity addition in research reactors, with an initial focus on the Annular Core Research Reactor (ACRR) at Sandia National ...


Developing A Simulation Tool For Evaluating In-Motion Detector Systems (La-Ur-18-29139), Brian Jennings Mar 2019

Developing A Simulation Tool For Evaluating In-Motion Detector Systems (La-Ur-18-29139), Brian Jennings

Nuclear Engineering ETDs

Available simulation software lacks the ability to produce in-motion detector responses for detector systems that may be used to detect the illicit trafficking of nuclear materials. In this thesis, a simulation tool is developed that uses static measured data as a basis set for producing in-motion detector responses with the ability to vary many parameters in each simulated trial. Once the basis set is measured and loaded into the simulation tool, the user interface allows the user to enter variations to speed, source height, source-to-detector distance, background exposure rate, which source(s) are present, their relative strength and shielding configuration ...


Development Of A Mixed-Radiation Directional Rotating Scatter Mask Detection System, Bryan V. Egner Mar 2019

Development Of A Mixed-Radiation Directional Rotating Scatter Mask Detection System, Bryan V. Egner

Theses and Dissertations

Previous work demonstrated gamma-ray directional detection through the integration of a radiation detection system and an additively manufactured rotating scatter mask (RSM). This work advances the RSM directional detection system through improvements in the system's design, validation of a new scatter mask, and the novel ability to directionally detect both neutrons and gamma rays, a desirable feature for many nuclear safeguard and counterproliferation applications. The mixed-radiation RSM system developed for this research utilized the Spartan I mask design coupled with a 1" EJ-309 liquid scintillator. A GEome-try ANd Tracking (Geant4) model is developed and quantitatively compared to experimental measurements ...


Temperature Measurements During High Flux Ion Beam Irradiations, M. L. Crespillo, Joseph T. Graham, Y. Zhang, W. J. Weber Feb 2019

Temperature Measurements During High Flux Ion Beam Irradiations, M. L. Crespillo, Joseph T. Graham, Y. Zhang, W. J. Weber

Joseph T. Graham

A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 x 1012 cm-2 s-1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing ...


Neutron Irradiation Effects On Domain Wall Mobility And Reversibility In Lead Zirconate Titanate Thin Films, Joseph T. Graham, Geoff L. Brennecka, Paulo Ferreira, Leo Small, David Duquette, Christopher Apblett, Sheldon Landsberger, Jon F. Ihlefeld Feb 2019

Neutron Irradiation Effects On Domain Wall Mobility And Reversibility In Lead Zirconate Titanate Thin Films, Joseph T. Graham, Geoff L. Brennecka, Paulo Ferreira, Leo Small, David Duquette, Christopher Apblett, Sheldon Landsberger, Jon F. Ihlefeld

Joseph T. Graham

The effects of neutron-induced damage on the ferroelectric properties of thin film lead zirconate titanate (PZT) were investigated. Two sets of PbZr0.52Ti0.48O3 films of varying initial quality were irradiated in a research nuclear reactor up to a maximum 1 MeV equivalent neutron fluence of (5.16± 0.03) x 1015 cm-2. Changes in domain wall mobility and reversibility were characterized by polarization-electric field measurements, Rayleigh analysis, and analysis of first order reversal curves (FORC). With increasing fluence, extrinsic contributions to the small-signal permittivity diminished. Additionally, redistribution of irreversible hysterons towards higher ...


Crystallographic Changes In Lead Zirconate Titanate Due To Neutron Irradiation, Alexandra Henriques, Joseph T. Graham, Sheldon Landsberger, Jon F. Ihlefeld, Geoff L. Brennecka, Donald W. Brown, Jennifer S. Forrester, Jacob L. Jones Feb 2019

Crystallographic Changes In Lead Zirconate Titanate Due To Neutron Irradiation, Alexandra Henriques, Joseph T. Graham, Sheldon Landsberger, Jon F. Ihlefeld, Geoff L. Brennecka, Donald W. Brown, Jennifer S. Forrester, Jacob L. Jones

Joseph T. Graham

Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7x1015 neutrons/cm2. The results showa measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by ...


Development Of Wireless Pebble For Packed Bed Heat Transfer Measurements And Machine Learning-Aided Accident Diagnosis For Loss Of Flow Accident (Lofa), Dongjune Chang Jan 2019

Development Of Wireless Pebble For Packed Bed Heat Transfer Measurements And Machine Learning-Aided Accident Diagnosis For Loss Of Flow Accident (Lofa), Dongjune Chang

Nuclear Engineering ETDs

In the first study, a novel wireless pebble for scale experiments is developed, and a simple heat transfer experiment is conducted to determine the difference in the local heat transfer coefficient. Based on the fact that the use of Dowtherm A between approximately 57–87 °C is an alternative to the normal use of the FliBe temperature range of 600–700°C, a new-concept wireless device in a scaled experiment is introduced. This device consists of a 63.5 mm diameter metal shell and contains a built-in customized circuit board and battery for driving temperature measurements and wireless data transfer ...


Application Of Machine Learning To Chf Modelling, Mingfu He Mr Jan 2019

Application Of Machine Learning To Chf Modelling, Mingfu He Mr

Nuclear Engineering ETDs

Accurate prediction of CHF is still a challenging issue in the study of boiling heat transfer. Many factors contribute to the occurrence of CHF and the various trigger mechanisms are proposed to unravel physical phenomena behind CHF. However, those mechanisms cannot cover the multiple primary factors simultaneously and even some of them still remain controversially unresolved. In light of the complexity and difficulty of CHF modelling, hereby an ensemble-learning based framework is proposed to model and predict CHF based on the databank of CHF. Some prior trials have been done for three primary aspects of dominant factors, that is, surface ...


Interaction Between Supersonic Disintegrating Liquid Jets And Their Shock Waves, K.-S. Im, S.-K. Cheong, Xin Liu, J. Wang, M.-C. Lai, M. W. Tate, A. Ercan, M. J. Renzi, D. R. Schuette, S. M. Gruner Jan 2019

Interaction Between Supersonic Disintegrating Liquid Jets And Their Shock Waves, K.-S. Im, S.-K. Cheong, Xin Liu, J. Wang, M.-C. Lai, M. W. Tate, A. Ercan, M. J. Renzi, D. R. Schuette, S. M. Gruner

Xin Liu

The use of additional spectral filtration for dual-energy (DE) imaging using a dual-source CT (DSCT) system was investigated and its effect on the material-specific DEratio was evaluated for several clinically relevant materials. The x-ray spectra, data acquisition, and reconstruction processes for a DSCT system (Siemens Definition) were simulated using information provided by the system manufacturer, resulting in virtual DE images. The factory-installed filtration for the 80 kV spectrum was left unchanged to avoid any further reductions in tube output, and only the filtration for the high-energy spectrum was modified. Only practical single-element filter materials within the atomic number range of ...


An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model ...


Measurement And Analysis Of The Extreme Physical Shock Environment Experienced By Crane-Mounted Radiation Detection Systems, Matthew Boyd, Jennifer Erchinger, Craig M. Marianno, Gene Kallenbach Jan 2019

Measurement And Analysis Of The Extreme Physical Shock Environment Experienced By Crane-Mounted Radiation Detection Systems, Matthew Boyd, Jennifer Erchinger, Craig M. Marianno, Gene Kallenbach

International Journal of Nuclear Security

At ports of entry, radiation detectors could be mounted on container gantry crane spreaders to monitor cargo containers entering and leaving the country. These detectors would have to withstand the extreme physical conditions experienced by these spreaders during normal operations. Physical shock data from the gable ends of a spreader were recorded during the loading and unloading of a cargo ship by two hard mounted PCB Piezotronics model 340A50 accelerometers and two Lansmont SAVER 9X30 units (with padding). The majority of large shocks were observed in the vertical direction. The Lansmont units recorded mean shocks of 22.215 ± 1.174 ...


Compositional Analysis Of Cerium And Cesium In Rapid Setting Cement As An Immobilization Agent For Nuclear Waste, Riyadh M. Motny Jan 2019

Compositional Analysis Of Cerium And Cesium In Rapid Setting Cement As An Immobilization Agent For Nuclear Waste, Riyadh M. Motny

Theses and Dissertations

A feasibility of rapid setting cement (RSC) as an agent of immobilization for certain elements such as fission products or radioactive materials was explored. Cerium (Ce) and cesium (Cs) have been selected as a surrogate for U and/or Pu and fission products, respectively, in this study in three phases. In Phase I, RSC was evaluated for physical properties (e.g., porosity, density, pH values, etc.) using two groups methods—the cement powder at different concentrations of Ce (2 – 10 wt%) with deionized water (DIW) and artificial seawater (ASW). The results showed that the final setting time and compressive strength ...


Holt (Maria) Papers, 1962-2016, Special Collections, Raymond H. Fogler Library, University Of Maine Jan 2019

Holt (Maria) Papers, 1962-2016, Special Collections, Raymond H. Fogler Library, University Of Maine

Finding Aids

Born and raised in Farmington, Maria Glen Holt studied nursing at Cornell University in New York. She worked many years as a public health nurse. Maria married Dr. Alfred Holt and the couple moved to Bath when Dr. Holt transferred his practice there. Maria served two terms as a State Representative and ultimately became an environmental activist, fighting against construction of Maine Yankee Nuclear Power Plant in Wiscasset, Maine. In 2017, Maria co-authored the book, The Death of Maine Yankee: Antinuclear Activists' Adventures, 1969-1996, with Elisabeth King.

Records include correspondence, publications, flyers, notes, and other materials documenting the efforts to ...


Experimental Investigation Of Liquid Contact In The Developing Post-Dryout Chf Flow Boiling Regime Using Surface Mounted Thermistors, Hiralkumar Harshadbhai Patel Jan 2019

Experimental Investigation Of Liquid Contact In The Developing Post-Dryout Chf Flow Boiling Regime Using Surface Mounted Thermistors, Hiralkumar Harshadbhai Patel

Doctoral Dissertations

"Understanding heat transfer in the post-critical heat flux (CHF) flow boiling regime is important for determining the performance of the heat transfer equipment for various industrial applications requiring high heat transfer rates, e.g., heat exchangers, boilers, chemical and nuclear reactors. Liquid can be present in the core of the flow channel in the form of entrained liquid droplets, especially immediately downstream of film dryout. These droplets are suspected to provide an important heat transfer mechanism as they impinge on the heated wall. The objective of the current study is to investigate liquid contact with the heated wall in this ...


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Xenon Dynamics Of Ahwr, Arindam Chakraborty, Baltej Singh Dec 2018

Xenon Dynamics Of Ahwr, Arindam Chakraborty, Baltej Singh

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

Large core reactors where the core dimension is significantly large compared to the migration length of neutron are more susceptible to xenon instability due to local perturbations. Advanced Heavy Water Reactor (AHWR) is being designed for on-power refueling. Therefore, refueling or movement of control devices in AHWR causes local perturbation. Preliminary modal analysis of AHWR equilibrium core also showed that the eigenvalue separation between fundamental mode and 1st azimuthal mode is small indicating its susceptibility to xenon oscillation in azimuthal plane. Therefore, xenon dynamic studies for AHWR with explicit xenon calculations were carried out using diffusion theory based computer code ...


Transient Analysis Of Primary Feed Pump Trip For 700 Mwe Iphwr, S. Phani Krishna, S. Pahari, S. Hajela, M. Singhal Dec 2018

Transient Analysis Of Primary Feed Pump Trip For 700 Mwe Iphwr, S. Phani Krishna, S. Pahari, S. Hajela, M. Singhal

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is a horizontal channel type reactor with two loops of Primary Heat Transport (PHTS) system. Three (two operating and one stand by) main boiler feed water pumps (BFP) supply feed water to Steam Generators (SGs). In the event of one of the running BFP trip, standby comes on line on auto. Transient analysis for this event is performed using in- house computer code ATMIKA.T .The transient has been initiated by tripping one of the pumps.

Two cases are postulated:

1: BFP Trip and Standby BFP available on auto
2: BFP Trip ...


Multi-Grid Acceleration Scheme For Neutron Transport Calculations Using Optimally Diffusive Cmfd Method, Lakshay Jain, Ramamoorthy Karthikeyan, Umasankari Kannan Dec 2018

Multi-Grid Acceleration Scheme For Neutron Transport Calculations Using Optimally Diffusive Cmfd Method, Lakshay Jain, Ramamoorthy Karthikeyan, Umasankari Kannan

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

Method of characteristics (MOC) is one of the most efficient deterministic techniques for high fidelity neutronic analysis of complex and heterogeneous reactor problems. However, the conventional MOC inner-outer iteration scheme suffers from poor convergence speeds for problems with large scattering to transport cross-section ratio and/or large dominance ratio. This creates a serious hindrance for its effective application to realistic reactor problems. A High Order – Low Order (HO-LO) multi-grid scheme using optimally diffusive coarse mesh finite difference (odCMFD) method has been introduced for improving the performance of code DIAMOND, an assembly level neutronic analysis code based on MOC and unstructured ...


Review Of Fuel Management Practices At Various Stages Of Nuclear Fuel Cycle In Phwrs In View Of Environmental Effects, Ravi Kumar Bansal, H. S. Sharma Dr, R. K. Singh Dr, P. N. Prasad Dec 2018

Review Of Fuel Management Practices At Various Stages Of Nuclear Fuel Cycle In Phwrs In View Of Environmental Effects, Ravi Kumar Bansal, H. S. Sharma Dr, R. K. Singh Dr, P. N. Prasad

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

Nuclear Power is emerging as a promising source of environmentally benign energy source alternate from both pollution free environment as well as solution to global warming because of minimal carbon footprint. However, release of radiation and radioactive contamination during fuel cycle operations comprising the optimum fuel utilization in Nuclear Reactors, still remains a challenge to contain the sources of radiation and contamination away from public domain. This review article envisages qualitatively the environmental effects w.r.t. radiation during flow of Natural Uranium fuel used in Indian Pressurized Heavy Water Reactors (IPHWRs) at various stages of mining, fabrication, transportation, operation ...


Heavy Water Concentration Measurement In Air, A. Gupta, D. V. Uduapa, A. Topkar, A. K. Mohanty Dec 2018

Heavy Water Concentration Measurement In Air, A. Gupta, D. V. Uduapa, A. Topkar, A. K. Mohanty

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

The heavy water in PHWRs flows at high temperature and pressure, hence leaks in the heat transport system are not uncommon. The loss of heavy water due to such leaks can lead to spreading of radioactivity and it also contributes to operating cost of the nuclear reactor. It is advantageous to detect small leaks, because if remains undetected, they may develop into a severe leak, which may lead to reactor shutdown. None of the sensors which are currently in use can meet all the requirement of high sensitivity, and real time measurement which is free from interference from other gamma ...


Flow And Thermal Effects Of Blockages In A Nano-Fluid Cooled Nuclear Fuel Subassembly, Shubham Mandot, N. Govindha Rasu Dec 2018

Flow And Thermal Effects Of Blockages In A Nano-Fluid Cooled Nuclear Fuel Subassembly, Shubham Mandot, N. Govindha Rasu

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

Nanofluids have a great impact on heat transfer characteristics due to increased thermal conductivity and heat transfer coefficient. In this study, Titanium nanoparticles mixed in liquid sodium has been chosen for analyzing the effect of Nanofluid coolant for a Nuclear Sub- assembly. This study is conducted to observe the effect of nanoparticles on the flow properties and heat transfer characteristics such as velocity, heat transfer coefficient, clad temperature, coolant temperature etc. These effects have been observed for varying nanoparticle concentration and different flow blockage sizes. For this study, 7-pin fuel bundle with and without blockage has been modeled and analyzed ...


Transient Simulation Of Lbe Cooled Chtr Under Natural Circulation With 3d Multi-Physics Code Arch-Th, D. K. Dwivedi, Anurag Gupta, Umasankari Kannan Dec 2018

Transient Simulation Of Lbe Cooled Chtr Under Natural Circulation With 3d Multi-Physics Code Arch-Th, D. K. Dwivedi, Anurag Gupta, Umasankari Kannan

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

India is developing a 100kWth Compact High Temperature Reactor (CHTR) to facilitate demonstration of technologies for high temperature process heat applications. CHTR is being designed as thorium based TRISO fueled and beryllium oxide moderated prismatic block type vertical core cooled with lead-bismuth eutectic (LBE) under natural circulation for 1000°C outlet. The new concept of high temperature core requires multi-physics multi-scale modeling based tools for investigating the normal operational behavior as well as anticipated transients of CHTR. In view of that, 3D multi-physics code ARCH-TH is being indigenously developed and validated for coupled neutronics-thermal hydraulic benchmarks. The multi-group diffusion based ...