Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal Aug 2021

Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal

Electronic Thesis and Dissertation Repository

Membranes made from atomically thin materials promise hundreds of times higher production rates than conventional polymer membranes for separation applications. Graphene is impermeable to gases but becomes selectively permeable once pores are introduced into it but creating trillions of nanopores over large areas is difficult. By instead choosing an inherently porous two-dimensional material with naturally identical pores repeated at high density, we may circumvent this challenge. In this work, we explore the potential of two candidate materials, 2D polyphenylene and graphdiyne. We synthesize cyclohexane-m-phenylene, a monomer of 2D polyphenylene. We then develop an atomic force microscopy technique for measuring the …


Atomistic Simulations Of Novel Nanoscale Semiconductor Devices: Resistance Switches And Two-Dimensional Transistors, Joseph P. Anderson, Mahbubul Islam, David Guzman, Alejandro Strachan Aug 2017

Atomistic Simulations Of Novel Nanoscale Semiconductor Devices: Resistance Switches And Two-Dimensional Transistors, Joseph P. Anderson, Mahbubul Islam, David Guzman, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

As transistors get smaller, we are achieving record levels of memory density. However, there is a limit to how small transistors can be made before their functionality breaks down. Thus alternatives to traditional transistor technology are needed. The two such technologies we examined are: resistance switching devices, which reversibly grow metal filaments through a dielectric, and two-dimensional transistors, which are capable of breaking through the scalability limit of traditional transistors. In order to design resistance switching devices which create filaments with some level of consistency, the dynamics of the filament formation need to be explored. Herein we model this process …