Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Development Of A Liquid Contacting Method For Investigating Photovoltaic Properties Of Pbs Quantum Dot Solids, Vitalii Alekseevich Dereviankin Feb 2018

Development Of A Liquid Contacting Method For Investigating Photovoltaic Properties Of Pbs Quantum Dot Solids, Vitalii Alekseevich Dereviankin

Dissertations and Theses

Photovoltaic (PV) devices based on PbS quantum dot (QD) solids demonstrate high photon-to-electron conversion yields. However, record power conversion efficiencies remain limited mainly due to bulk and interfacial defects in the light absorbing material (QD solids). Interfacial defects can be formed when a semiconductor, such as QD solid, is contacted by another material and may predetermine the semiconductor/metal or semiconductor/metal-oxide junction properties. The objective of the work described in this dissertation was set to explore whether electrochemical contacting using liquid electrolytes can provide sufficient means of contacting the QD solids to investigate their PV performance without introducing the unwanted interfacial …


Optical Metrology For Cigs Solar Cell Manufacturing And Its Cost Implications, Sravan Kumar Sunkoju Jan 2016

Optical Metrology For Cigs Solar Cell Manufacturing And Its Cost Implications, Sravan Kumar Sunkoju

Legacy Theses & Dissertations (2009 - 2024)

Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and …


Development Of Enhanced Window Layers For Cigs Photovoltaic Devices, James Nicholas Alexander Jan 2016

Development Of Enhanced Window Layers For Cigs Photovoltaic Devices, James Nicholas Alexander

Legacy Theses & Dissertations (2009 - 2024)

Photovoltaic devices are among the promising options for sustainable future energy generation. Thin film solar cells have demonstrated the ability to be a low-cost solution to clean renewable energy and are cost competitive with current silicon based photovoltaic devices. One of the most promising thin film devices right now is the Copper Indium Gallium Selenide (CIGS) solar cell with maximum reported power conversion efficiency of 22.3%. The Transparent Conducting Oxide (TCO) which is the top layer of the CIGS device also known as the window layer, is responsible for collecting the electrons generated in the CIGS device and conducting them …


Cds Quantum Dot-Sensitized Solar Cells Based On Nano-Branched Tio2 Arrays, Chang Liu, Yitan Li, Lin Wei, Cuncun Wu, Yanxue Chen, Liangmo Mei, Jun Jiao Mar 2014

Cds Quantum Dot-Sensitized Solar Cells Based On Nano-Branched Tio2 Arrays, Chang Liu, Yitan Li, Lin Wei, Cuncun Wu, Yanxue Chen, Liangmo Mei, Jun Jiao

Mechanical and Materials Engineering Faculty Publications and Presentations

Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically. A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95% were recorded for cells based on …


Study Of Nickel Silicide Formation By Physical Vapor Deposition Techniques, Shanti Pancharatnam Jan 2013

Study Of Nickel Silicide Formation By Physical Vapor Deposition Techniques, Shanti Pancharatnam

Legacy Theses & Dissertations (2009 - 2024)

Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability.


Development Of An Industrial Fabrication Process For Next Generation, Thinner And Larger Crystalline Silicon (C-Si) Wafer-Based Solar Cells, Anh Viet Nguyen Jan 2012

Development Of An Industrial Fabrication Process For Next Generation, Thinner And Larger Crystalline Silicon (C-Si) Wafer-Based Solar Cells, Anh Viet Nguyen

Legacy Theses & Dissertations (2009 - 2024)

The world's solar cell production has grown rapidly and steadily with an annual average of 30% over the last two decades. Single and micro-crystalline silicon solar cells have been the major reason for this production increase. In 2009, silicon-based solar cells comprised almost 90% of worldwide photovoltaic module shipments.