Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Secondary Electron Interactions In Exposures Of Euv Photoresists, Steven Grzeskowiak Jan 2019

Secondary Electron Interactions In Exposures Of Euv Photoresists, Steven Grzeskowiak

Legacy Theses & Dissertations (2009 - 2024)

The microelectronic industry’s movement toward smaller feature sizes has necessitated a shift to extreme ultraviolet (EUV) lithography to enable cost-effective patterning of sub 20-nm features. However, this shift from 193-nm lithography (6.4 eV) to EUV (13.5 nm, 92 eV) poses significant obstacles, such that photolithography is now operating in an energy range above the electron binding energies of common atomic species in photoresists. This significant energy increase means the chemical reactions happening within operate in the realm of radiation chemistry instead of photochemistry since the observed reactions are due almost entirely to the action of photoelectrons as they dissipate their …


Cvd Molybdenum Disulfide : Material And Device Engineering, Eui Sang Song Jan 2019

Cvd Molybdenum Disulfide : Material And Device Engineering, Eui Sang Song

Legacy Theses & Dissertations (2009 - 2024)

Molybdenum disulfide (MoS2) is a semiconducting 2D layered material that has attracted a lot of attention due to its material properties for electronics and optoelectronics device applications. These include a layer-dependent band gap, an indirect to direct energy transition at monolayer state, and strong light-matter interaction. A large majority of 2D materials and devices have been studied through micromechanical exfoliation for extraction and electron beam lithography for device fabrication. These methodologies while able to generate high quality materials and precisely fabricated devices, are not suitable for large scale production. Efforts have been made to make MoS2 and other 2D materials …


Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal Jan 2017

Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal

Theses and Dissertations

Advances in the biomedical field require functional materials and processes that can lead to devices that are biocompatible, and biodegradable while maintaining high performance and mechanical conformability. In this context, a current shift in focus is towards natural polymers as not only the structural but also functional components of such devices. This poses material-specific functionalization and fabrication related questions in the design and fabrication of such systems. Silk protein biopolymers from the silkworm show tremendous promise in this regard due to intrinsic properties: mechanical performance, optical transparency, biocompatibility, biodegradability, processability, and the ability to entrap and stabilize biomolecules. The unique …


Mechanisms Of Euv Exposure : Photons, Electrons And Holes, Amrit Kausik Narasimhan Jan 2017

Mechanisms Of Euv Exposure : Photons, Electrons And Holes, Amrit Kausik Narasimhan

Legacy Theses & Dissertations (2009 - 2024)

The microelectronics industry’s movement toward smaller and smaller feature sizes has necessitated a shift to Extreme Ultra-Violet (EUV) lithography to be able to pattern sub 20-nm features, much like earlier shifts from i-line to 248 nm. However, this shift from 193-nm lithography to EUV (13.5 nm) poses significant obstacles. EUV is the first optical lithography to operate in an energy range (92 eV per photon vs. 6.4 eV per photon for 193 nm lithography) above the electron binding energies of common resist atomic species. This significant energy increase complicates resist design. For exposures of equal dose, resists receive 14 times …


Development Of Micro-/Nano-Architectures For Intracellular Sensing Platform, Ryan M. Preston, Dae Seung Wie, Chi Hwan Lee Aug 2016

Development Of Micro-/Nano-Architectures For Intracellular Sensing Platform, Ryan M. Preston, Dae Seung Wie, Chi Hwan Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently available nanotechnologies are capable of creating various nanostructures in controlled dimensions such as particles (0D), wires (1D), membranes (2D), and cubes (3D) by exploiting “top-down” or “bottom-up” methods. However, there exist limitations to systematically construct hierarchical nanostructures with geometric complexities. This study is focused on developing a novel nanofabrication strategy that can rationally produce a set of hierarchical nanostructures configured with precisely engineered facets, tip shapes, and tectonic motifs. We aim to identify a collection of optimal materials, array layouts, basic components, and nanofabrication techniques for the production of hierarchical nanostructures by exploiting device-grade semiconducting silicon materials. To accomplish …


Molecular Organometallic Resists Of Tin And Tellurium, Ryan Del Re Jan 2015

Molecular Organometallic Resists Of Tin And Tellurium, Ryan Del Re

Legacy Theses & Dissertations (2009 - 2024)

EUV photoresists made from organotin and organotellurium dicarboxylates were lithographically evaluated for photosensitivity and dense-line patterning. The effects of ligand structure and central metal are explored through systematic molecular modification. Through this work, two photoresists were discovered that are capable of high resolution and low line-edge roughness. Dibenzyltin dipivalate resolves 22-nm dense lines with 1.4-nm LER and dibenzyltin dibenzoate resolves 35-nm dense lines with 1.1-nm LER.


Characterization Of Extreme Ultraviolet Lithography Photoresists Using Advanced Metrology And Fitting Techniques, Genevieve Kane Jan 2014

Characterization Of Extreme Ultraviolet Lithography Photoresists Using Advanced Metrology And Fitting Techniques, Genevieve Kane

Legacy Theses & Dissertations (2009 - 2024)

As extreme ultraviolet lithography (EUVL) prepares to be incorporated into high volume manufacturing, many challenges must be addressed. Among these challenges, a need for photoresist improvement exists. The work described here will look into some of the problems and challenges facing EUV resists, in particular out-of-band (OOB) wavelengths of light and their interaction with photoresists. Studies have been completed on the effect of out-of-band light on photoresists [1]-[3]. It is imperative that solutions to suppress the deep ultraviolet (DUV) OOB light be incorporated into next generation EUV production tools due to concerns of decreased performance of lithography, and an increase …


Multicomponent Patterning Of Nanocomposite Polymer And Nanoparticle Films Using Photolithography And Layer-By-Layer Self -Assembly, Javeed Shaikh Mohammed Apr 2006

Multicomponent Patterning Of Nanocomposite Polymer And Nanoparticle Films Using Photolithography And Layer-By-Layer Self -Assembly, Javeed Shaikh Mohammed

Doctoral Dissertations

In this dissertation, the fabrication, characterization, and application examples of 3D multicomponent nanocomposite micropatterns (MNMs) with precise spatial arrangements are described. The ability to produce such small-scale 3D structures with versatility in composition and structure is a new development based on the integration of nanoscale layer-by-layer (LbL) self-assembly and microscale photolithographic patterning, enabling construction of surfaces with microscale patterns that possess nanotopographies. The techniques used here are analogous to surface micromachining, except that the deposition materials are polymers, biological materials, and colloidal nanoparticles used to produce 3D MNMs. A key feature of the resulting 3D MNMs is that the physical …