Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Low-Voltage And Short-Channel Pentacene Field-Effect Transistors With Top-Contact Geometry Using Parylene-C Shadow Masks, Yoonyoung Chung, Boris Murmann, Selvapraba Selvarasah, Mehmet Dokmeci, Zhenan Bao Jun 2011

Low-Voltage And Short-Channel Pentacene Field-Effect Transistors With Top-Contact Geometry Using Parylene-C Shadow Masks, Yoonyoung Chung, Boris Murmann, Selvapraba Selvarasah, Mehmet Dokmeci, Zhenan Bao

Mehmet R. Dokmeci

We have fabricated high-performance top-contact pentacene field-effect transistors using a nanometer-scale gate dielectric and parylene-C shadow masks. The high-capacitance gate dielectric, deposited by atomic layer deposition of aluminum oxide, resulted in a low operating voltage of 2.5 V. The flexible and conformal parylene-C shadow masks allowed fabrication of transistors with channel lengths of L = 5, 10, and 20 μm. The field-effect mobility of the transistors was μ = 1.14 (±0.08) cm²/V s on average, and the IMAX/IMIN ratio was greater than 10⁶.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci May 2011

Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Alternating electric field is used to assemble gold nanoparticle nanowires from liquid suspensions. The effects of electrode geometry and the dielectrophoresis force on the chaining and branching of nanowire formation are investigated. The nanowire assembly processes are modeled using finite element calculations, and the particle trajectories under the combined influence of dielectrophoresis force and viscous drag are simulated. Nanoparticle nanowires with 10 nm resolution are fabricated. The wires can be further oriented along an externally introduced flow. This work provides an approach towards rapid assembly and organization of ultrasmall nanoparticle networks.


Nanoengineering Of A Negative-Index Binary-Staircase Lens For The Optics Regime, Bernard Didier F. Casse, Ravinder K. Banyal, W. T. Lu, Y. J. Huang, Selvapraba Selvarasah, Mehmet R. Dokmeci, Srinivas Sridhar May 2011

Nanoengineering Of A Negative-Index Binary-Staircase Lens For The Optics Regime, Bernard Didier F. Casse, Ravinder K. Banyal, W. T. Lu, Y. J. Huang, Selvapraba Selvarasah, Mehmet R. Dokmeci, Srinivas Sridhar

Mehmet R. Dokmeci

We show that a binary-staircase optical element can be engineered to exhibit an effective negative index of refraction, thereby expanding the range of optical properties theoretically available for future optoelectronic devices. The mechanism for achieving a negative-index lens is based on exploiting the periodicity of the surface corrugation. By designing and nanofabricating a planoconcave binary-staircase lens in the InP/InGaAsP platform, we have experimentally demonstrated at 1.55 μm that such negative-index concave lenses can focus plane waves. The beam propagation in the lens was studied experimentally and was in excellent agreement with the three-dimensional finite-difference time-domain numerical simulations.