Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology

Selected Works

Articles 1 - 30 of 35

Full-Text Articles in Nanoscience and Nanotechnology

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen Jul 2019

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Carmen Gomes

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen Jul 2019

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Jonathan C. Claussen

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey Feb 2018

Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey

Simon Laflamme

The monitoring of civil structures is critical in ensuring users' safety. Structural health monitoring (SHM) is the automation of this monitoring task. It is typically used to identify incipient damages through a spatio-temporal comparison in structural behaviors. Traditional sensors exhibit mechanical characteristics that are usually very different from those of the structures they monitor, which is a factor limiting their durability. Ideally, the material of a sensor would share the same mechanical characteristics as the material onto or into which it is installed. A solution is to fabricate multifunctional materials, capable of serving both structural and sensing functions, also known ...


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Mar 2017

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Thomas E. Wilson

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Exploring Public Values Implications Of The I-Corps Program, Jan Youtie, Philip Shapira Oct 2016

Exploring Public Values Implications Of The I-Corps Program, Jan Youtie, Philip Shapira

Philip Shapira

This paper examines how the concept of public values can be operationalized in an ongoing public initiative to stimulate innovation in an emerging technology. Our study focuses on Innovation Corps (I-Corps)—a program initiated in 2011 by the National Science Foundation (NSF) to accelerate the process of commercializing science-driven discoveries. The I-Corps method has since spread rapidly across multiple US agencies. Separately, there has also been heightened attention to the early anticipation and mitigation of the implications of emerging science and technology. Drawing on the case of nanotechnology, the paper considers how public values related to nanotechnology commercialization can be ...


Nanomanufacturing Outside The Lab: A Case Study In Academic-Industry Partnerships, Ann Delaney, Eric Lindquist Jun 2016

Nanomanufacturing Outside The Lab: A Case Study In Academic-Industry Partnerships, Ann Delaney, Eric Lindquist

Ann E. Delaney

One of the National Nanotechnology Initiative’s Signature Initiatives is Sustainable Manufacturing.  With over $20 billion invested in nanotechnology research and development by the US government since 2000, there is now an emphasis on transitioning from primarily fundamental research to work aimed at overcoming the barriers preventing these technologies from being successfully produced and integrated into devices manufactured at an industrial scale.
To date, much focus has been placed on the technical barriers to commercialization.  However, other barriers outside of the lab must also be addressed in order to achieve broad commercialization of nanotechnology. The Public Policy Research Center (PPRC ...


A Study Of Titania Nanotube Synthesis In Chloride-Ion-Containing Media, E. Panaitescu, C. Richter, L. Menon Dec 2013

A Study Of Titania Nanotube Synthesis In Chloride-Ion-Containing Media, E. Panaitescu, C. Richter, L. Menon

Eugen Panaitescu

We have completed a detailed experimental investigation into the recently discovered synthesis of titania nanotubes in chloride-ion-containing media. We show that the role of the chloride ions is catalytic and it has a strong effect in increasing the reactivity of the solution, while the nature of cations has no visible role. We have identified the critical parameters for optimal growth and fast production of nanotubes, and a basic growth mechanism for the tubes is proposed. This opens routes for significant improvements of the method toward uniformity and/or better overall yield, making it a viable alternative to the present established ...


Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen Jan 2013

Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen

Albert B Chen

Dielectric thin films in nanodevices may absorb moisture, leading to physical changes and property/performance degradation, such as altered data storage and readout in resistance random access memory. Here we demonstrate using a nanometallic memory that such degradation proceeds via nanoporosity, which facilitates water wetting in otherwise nonwetting dielectrics. Electric degradation only occurs when the device is in the charge-storage state, which provides a nanoscale dielectrophoretic force directing H2O to internal field centers (sites of trapped charge) to enable bond rupture and charged hydroxyl formation. While these processes are dramatically enhanced by an external DC or AC field and electron-donating ...


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Srinivas Sridhar

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Donald Heiman

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. Bennett, L. Menon, D. Heiman Oct 2012

Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. Bennett, L. Menon, D. Heiman

Donald Heiman

Ordered arrays of GaMnAs magnetic semiconductor nanodots have been fabricated using anodic porous alumina templates as etch masks. The magnetic behavior is studied for prepared arrays with 40 nm dot diameter, 15 nm dot thickness, and 80 nm periodicity. The disklike nanodots exhibit an easy axis for fields applied in the radial direction and a hard axis in the smaller direction. In the radial direction superparamagnetism is observed with a blocking temperature of 30 K. The fabrication technique is convenient for preparing nanodot arrays of compound semiconductors that cannot be formed by self-assembly techniques.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Latika Menon

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. P. Bennett, L. Menon, D. Heiman Oct 2012

Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. P. Bennett, L. Menon, D. Heiman

Latika Menon

Ordered arrays of GaMnAs magnetic semiconductor nanodots have been fabricated using anodic porous alumina templates as etch masks. The magnetic behavior is studied for prepared arrays with 40 nm dot diameter, 15 nm dot thickness, and 80 nm periodicity. The disklike nanodots exhibit an easy axis for fields applied in the radial direction and a hard axis in the smaller direction. In the radial direction superparamagnetism is observed with a blocking temperature of 30 K. The fabrication technique is convenient for preparing nanodot arrays of compound semiconductors that cannot be formed by self-assembly techniques.


A Study Of Titania Nanotube Synthesis In Chloride-Ion-Containing Media, E. Panaitescu, C. Richter, L. Menon Oct 2012

A Study Of Titania Nanotube Synthesis In Chloride-Ion-Containing Media, E. Panaitescu, C. Richter, L. Menon

Latika Menon

We have completed a detailed experimental investigation into the recently discovered synthesis of titania nanotubes in chloride-ion-containing media. We show that the role of the chloride ions is catalytic and it has a strong effect in increasing the reactivity of the solution, while the nature of cations has no visible role. We have identified the critical parameters for optimal growth and fast production of nanotubes, and a basic growth mechanism for the tubes is proposed. This opens routes for significant improvements of the method toward uniformity and/or better overall yield, making it a viable alternative to the present established ...


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Apr 2012

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Srinivas Sridhar

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci Apr 2012

Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci

Sivasubramanian Somu

Alternating electric field is used to assemble gold nanoparticle nanowires from liquid suspensions. The effects of electrode geometry and the dielectrophoresis force on the chaining and branching of nanowire formation are investigated. The nanowire assembly processes are modeled using finite element calculations, and the particle trajectories under the combined influence of dielectrophoresis force and viscous drag are simulated. Nanoparticle nanowires with 10 nm resolution are fabricated. The wires can be further oriented along an externally introduced flow. This work provides an approach towards rapid assembly and organization of ultrasmall nanoparticle networks.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer Apr 2012

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Sivasubramanian Somu

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Low-Voltage And Short-Channel Pentacene Field-Effect Transistors With Top-Contact Geometry Using Parylene-C Shadow Masks, Yoonyoung Chung, Boris Murmann, Selvapraba Selvarasah, Mehmet Dokmeci, Zhenan Bao Jun 2011

Low-Voltage And Short-Channel Pentacene Field-Effect Transistors With Top-Contact Geometry Using Parylene-C Shadow Masks, Yoonyoung Chung, Boris Murmann, Selvapraba Selvarasah, Mehmet Dokmeci, Zhenan Bao

Mehmet R. Dokmeci

We have fabricated high-performance top-contact pentacene field-effect transistors using a nanometer-scale gate dielectric and parylene-C shadow masks. The high-capacitance gate dielectric, deposited by atomic layer deposition of aluminum oxide, resulted in a low operating voltage of 2.5 V. The flexible and conformal parylene-C shadow masks allowed fabrication of transistors with channel lengths of L = 5, 10, and 20 μm. The field-effect mobility of the transistors was μ = 1.14 (±0.08) cm²/V s on average, and the IMAX/IMIN ratio was greater than 10⁶.


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Dattatri K. Nagesha

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet Dokmeci Jun 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet Dokmeci

Sinan Müftü

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and ...


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Latika Menon

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer Jun 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Ahmed A. Busnaina

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci Jun 2011

Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci

Ahmed A. Busnaina

Alternating electric field is used to assemble gold nanoparticle nanowires from liquid suspensions. The effects of electrode geometry and the dielectrophoresis force on the chaining and branching of nanowire formation are investigated. The nanowire assembly processes are modeled using finite element calculations, and the particle trajectories under the combined influence of dielectrophoresis force and viscous drag are simulated. Nanoparticle nanowires with 10 nm resolution are fabricated. The wires can be further oriented along an externally introduced flow. This work provides an approach towards rapid assembly and organization of ultrasmall nanoparticle networks.


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Ahmed A. Busnaina

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer May 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Nicol E. McGruer

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Yung Joon Jung

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and ...


Parallel Arrays Of Individually Addressable Single-Walled Carbon Nanotube Field-Effect Transistors, Sarah Lastella, Govind Mallick, Raymond Woo, Shashi Karna, David Rider, Ian Manners, Yung-Joon Jung, Chang Ryu, Pulickel Ajayan May 2011

Parallel Arrays Of Individually Addressable Single-Walled Carbon Nanotube Field-Effect Transistors, Sarah Lastella, Govind Mallick, Raymond Woo, Shashi Karna, David Rider, Ian Manners, Yung-Joon Jung, Chang Ryu, Pulickel Ajayan

Yung Joon Jung

High-throughput field-effect transistors (FETs) containing over 300 disentangled, high-purity chemical-vapor-deposition-grown single-walled carbon nanotube (SWNT) channels have been fabricated in a three-step process that creates more than 160 individually addressable devices on a single silicon chip. This scheme gives a 96% device yield with output currents averaging 5.4 mA and reaching up to 17 mA at a 300 mV bias. Entirely semiconducting FETs are easily realized by a high current selective destruction of metallic tubes. The excellent dispersity and nearly-defect-free quality of the SWNT channels make these devices also useful for nanoscale chemical and biological sensor applications.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer May 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Yung Joon Jung

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and ...


Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci May 2011

Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Alternating electric field is used to assemble gold nanoparticle nanowires from liquid suspensions. The effects of electrode geometry and the dielectrophoresis force on the chaining and branching of nanowire formation are investigated. The nanowire assembly processes are modeled using finite element calculations, and the particle trajectories under the combined influence of dielectrophoresis force and viscous drag are simulated. Nanoparticle nanowires with 10 nm resolution are fabricated. The wires can be further oriented along an externally introduced flow. This work provides an approach towards rapid assembly and organization of ultrasmall nanoparticle networks.