Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Dynamical Thermal Conductivity Of Suspended Graphene Ribbons In The Hydrodynamic Regime, Zlatan Aksamija, Arnab K. Majee Jul 2018

Dynamical Thermal Conductivity Of Suspended Graphene Ribbons In The Hydrodynamic Regime, Zlatan Aksamija, Arnab K. Majee

Zlatan Aksamija

The steady-state behavior of thermal transport in bulk and nanostructured semiconductors has been widely
studied, both theoretically and experimentally. On the other hand, fast transients and frequency dynamics of
thermal conduction has been given less attention. The frequency response of thermal conductivity has become
more crucial in recent years, especially in light of the constant rise in the clock frequencies in microprocessors
and terahertz sensing applications. Thermal conductivity in response to a time-varying temperature field starts
decaying when the frequency exceeds a cutoff frequency Omega_c, which is related to the inverse of phonon relaxation time τ, on the order of …


Carbon 1d/2d Nanoelectronics : Integration And Device Applications, Zhaoying Hu Jan 2015

Carbon 1d/2d Nanoelectronics : Integration And Device Applications, Zhaoying Hu

Legacy Theses & Dissertations (2009 - 2024)

Graphene is a one-atom thick planar monolayer of sp2-bonded carbon atoms organized in a hexagonal crystal lattice. A single walled carbon nanotube (CNT) can be thought of as a graphene sheet rolled up into a seamless hollow cylinder with extremely high length-to-diameter ratio. Their ultra-thin body, large surface area, and exceptional electronic, optical and mechanical properties make these low-dimensional carbon materials ideal candidates for electronic applications. However, adopting low-dimensional carbon materials into semiconductor industry faces significant material and integration challenges. There is an urgent need for research at fundamental and applicative levels to find a roadmap for carbon nanomaterial to …


Nanoscale Contacts Between Semiconducting Nanowires And Metallic Graphenes, Seongmin Kim, David B. Janes, Sung-Yool Choi, Sanghyun Ju Jul 2012

Nanoscale Contacts Between Semiconducting Nanowires And Metallic Graphenes, Seongmin Kim, David B. Janes, Sung-Yool Choi, Sanghyun Ju

Birck and NCN Publications

Metal–semiconductor (M–S) junctions are important components in many semiconductor devices, and there is growing interest in realizing high quality M–S contacts that are optically transparent. In this paper, we present our investigations into the characteristics of M–S junction in a semiconducting ZnO nanowire that was directly grown on a multilayer graphene film (MGF). The synthesized nanowires were fabricated into two-terminal devices with MGF as one contact and Al as the other contact. By comparison with devices employing Al contacts at both ends, the nanowire resistivity and specific contact resistivity of the MGF–nanowire contact can be extracted. The extracted specific contact …


Graphene-Based Post-Cmos Architecture, Sansiri Tanachutiwat Jan 2012

Graphene-Based Post-Cmos Architecture, Sansiri Tanachutiwat

Legacy Theses & Dissertations (2009 - 2024)

The semiconductor industry relies on CMOS technology which is nearing its scaling limitations. In order to continue the historical growth rate of the device density of digital logic chips, novel nanomaterials and nanodevices will need to be developed.