Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Nanoscience and Nanotechnology

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman Dec 2023

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu Nov 2020

Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu

FIU Electronic Theses and Dissertations

Surface Enhanced Raman Spectroscopy (SERS) is an analytical technique in which nanostructured substrates amplify the inherently weak Raman signal of an adsorbed species by several orders of magnitude, enabling the detection of trace compounds, up to the single molecule level. While this may be an exceptional tool for any analytical scientist, SERS is at present relegated to the role of academic sensation, and is underutilized in everyday analytical practice. The SERS community is increasingly attributing this setback to a poor understanding of nanoscale surfaces and their chemical environment; since molecular adsorption at the nanostructured surface enables SERS detection, uncertainty about …


Optimization Of Nitrate Removal From Aqueous Solution By Acid-Activated Rice Straw Supported Nano Zero-Valent Iron Using Response Surface Methodology, Dalia A. Ali Eng, Nagwa Mahmoud Al-Mansi Prof, Mohamed Amin Sadek Prof., Ahmad Wafiq Abolnasr Dr. Aug 2020

Optimization Of Nitrate Removal From Aqueous Solution By Acid-Activated Rice Straw Supported Nano Zero-Valent Iron Using Response Surface Methodology, Dalia A. Ali Eng, Nagwa Mahmoud Al-Mansi Prof, Mohamed Amin Sadek Prof., Ahmad Wafiq Abolnasr Dr.

Chemical Engineering

Rice straw is one of the most common agricultural wastes due to its large production amounts. Energy valorization of rice straw is a technology used for nitrate removal as the produced ashes used to generate the adsorbent by means of an alkali dissolution followed by acid precipitation. The novelty of the proposed process is that the production of the nano zero-valent iron supported acid-activated rice straw (AARS-nZVI) adsorbent is carried out without the energy valorization process but, through an acid activation for rice straw followed by precipitation of nZVI particles on its surface. The new adsorbent synthesis, characterization and application …


Degradation And Exciton Energy Transfer Studies In Single-Walled Carbon Nanotube Bundles, Abhishek Gottipati Jan 2016

Degradation And Exciton Energy Transfer Studies In Single-Walled Carbon Nanotube Bundles, Abhishek Gottipati

Legacy Theses & Dissertations (2009 - 2024)

Single walled carbon nanotubes (SWNTs) due to their unique optical behavior, large surface area, robust mechanical strength and electrical properties make them one of the ideal candidates for sensing and opto-electronic applications. In this work, we explore the energy transfer (exciton energy transfer-EET) phenomena occurring between nanotubes in bundles, using resonance Raman spectroscopy.


Functional Clay Nanotubes And Composites, Yafei Zhao Apr 2015

Functional Clay Nanotubes And Composites, Yafei Zhao

Doctoral Dissertations

Tubular nanomaterials and their composites have been extensively studied in recent years in the fields of physics, chemistry, biology, and biomedicine. Carbon nanotube is the most commonly studied tubular nanomaterial; however, toxicity and high cost make it less attractive in industry and thus restricts its applications. Halloysite nanotubes, which are available in abundance in the United States as well as in other countries around the world, is a low-cost, unique and versatile aluminosilicate mineral with a chemical formula of Al4Si4O10(OH)8·nH2O. Basically, the halloysite tube diameter is around 50 nm and the length varies with different locations ranging from 0.4-1.5 μm. …


First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel Jan 2014

First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel

Legacy Theses & Dissertations (2009 - 2024)

TiO2 is a semiconducting material that has been used extensively in many industrial applications, and recently has become a candidate for photocatalytic water splitting, fuel cell anode support materials, sensors, and other novel nanodevices. The interface of TiO2 with water, historically well-studied but still poorly understood, presents a ubiquitous environmental challenge towards the ultimate practical usefulness of these technologies. Ground-state density functional theory (DFT) calculations studying the characteristics of molecular adsorption on model surfaces have been studied for decades, showing constant improvement in the description of the energetics and electronic structure at interfaces. These simulations are invaluable in the …


Adsorption And Diffusion Of Gases In Nano-Porous Materials, Nethika Sahani Suraweera Dec 2013

Adsorption And Diffusion Of Gases In Nano-Porous Materials, Nethika Sahani Suraweera

Doctoral Dissertations

In this work, a systematic computational study directed toward developing a molecular-level understanding of gas adsorption and diffusion characteristics in nano-porous materials is presented. Two different types of porous adsorbents were studied, one crystalline and the other amorphous. Physisorption and diffusion of hydrogen in ten iso-reticular metal-organic frameworks (IRMOFs) were investigated. A set of nine adsorbents taken from a class of novel, amorphous nano-porous materials composed of spherosilicate building blocks and isolated metal sites was also studied, with attention paid to the adsorptive and diffusive behavior of hydrogen, methane, carbon dioxide and their binary mixtures. Both classes of materials were …


Metal Oxide Graphene Nanocomposites For Organic And Heavy Metal Remediation, Tanvir E. Alam Mar 2012

Metal Oxide Graphene Nanocomposites For Organic And Heavy Metal Remediation, Tanvir E. Alam

USF Tampa Graduate Theses and Dissertations

This thesis consists of two research problems in the water decontamination area. In the first work, the main focus is to understand the structure and photocatalytic activity of titanium dioxide with graphene (G-TiO2) which is synthesized by using sol-gel method. The photocatalytic activity of TiO2 is limited by the short electron hole pair recombination time. Graphene, with high specific surface area and unique electronic properties, can be used as a good support for TiO2 to enhance the photocatalytic activity. The obtained G-TiO2 photocatalysts has been characterized by X-Ray Diffraction (XRD), Raman Spectroscopy, Transmission Electron Microscopy (TEM), FTIR Spectroscopy and Ultraviolet …


Density Functional Theory Studies Of Surface-Enhanced Raman Spectroscopy In Electrochemical Interfaces, Liu-Bin Zhao, De-Yin Wu, Bin Ren, Zhong-Qun Tian Aug 2010

Density Functional Theory Studies Of Surface-Enhanced Raman Spectroscopy In Electrochemical Interfaces, Liu-Bin Zhao, De-Yin Wu, Bin Ren, Zhong-Qun Tian

Journal of Electrochemistry

Quantum chemical density functional theory and Raman scattering theory were used to study the bonding mechanism and surface-enhanced Raman spectroscopy of pyridine adsorbed on transition metals (Ⅷ group) and coinage metals (IB group) . SERS studies of pyridine-metal systems have been reviewed. Chemical bonding mechanism as well as photo-driven charge transfer mechanism was considered to investigate the vibrational frequency shift and the enhancement of SERS intensity in electrochemical interfaces. Our theoretical results can be used to interpret the SERS phenomena dependent on metals,excitation wavelengths,and applied potentials.


Electrochemical Surface-Enhanced Raman Spectroscopy—Current Status And Perspective, Bin Ren, Jian-Feng Li, Yi-Fan Huang, Zhi-Cong Zeng, Zhong-Qun Tian Aug 2010

Electrochemical Surface-Enhanced Raman Spectroscopy—Current Status And Perspective, Bin Ren, Jian-Feng Li, Yi-Fan Huang, Zhi-Cong Zeng, Zhong-Qun Tian

Journal of Electrochemistry

Electrochemical interface is a very important interface closely related to various energy and life processes. Surface-enhanced Raman scattering was widely used in electrochemistry soon after its discovery to understand the surface bonding,configuration,and orientation of the surface species. In recent 10 years,the fast development of nanoscience and nanotechnology has offered SERS with abundant substrates and characterization methods,which has allowed impressive development of electrochemical SERS. This articles will follow the time line to make systematically overview of SERS on Au and Ag,thin-layer transition-metal SERS,pure transition metal SERS,core-shell SERS and those methods for studying single crystal surfaces,including gap-mode SERS, TERS and SHINERS. Emphasis …


Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong May 2010

Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong

Doctoral Dissertations

Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage.

This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities of …


Surface Raman Spectra Obtained From Various Electrodeposited Transidon Metals, Jingsong Gao, Bin Ren, Qunjian Huang, Zhongqun Tian Aug 1996

Surface Raman Spectra Obtained From Various Electrodeposited Transidon Metals, Jingsong Gao, Bin Ren, Qunjian Huang, Zhongqun Tian

Journal of Electrochemistry

Good quality potential-dependent surface Raman spectra of pyridine were obtained for the first time from a series of transition metals,e. g.,Fe,Co,Ni,Ru,Rh,Pd and Pt,which were electrodeposited on non-SERS-active substrates.The influences of the applied potential and the nature of metal on the adsorption behaviors were discussed briefly.This result illustrates that Raman spectroscopy is becoming a more general and powerful tool to study various electrochemical interfaces.