Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Intracellular Nanoparticle Dynamics Affected By Cytoskeletal Integrity, Martha E. Grady, Emmabeth Parrish, Matthew A. Caporizzo, Sarah C. Seeger, Russell J. Composto, David M. Eckmann Mar 2017

Intracellular Nanoparticle Dynamics Affected By Cytoskeletal Integrity, Martha E. Grady, Emmabeth Parrish, Matthew A. Caporizzo, Sarah C. Seeger, Russell J. Composto, David M. Eckmann

Mechanical Engineering Faculty Publications

The cell interior is a crowded chemical space, which limits the diffusion of molecules and organelles within the cytoplasm, affecting the rates of chemical reactions. We provide insight into the relationship between non-specific intracellular diffusion and cytoskeletal integrity. Quantum dots entered the cell through microinjection and their spatial coordinates were captured by tracking their fluorescence signature as they diffused within the cell cytoplasm. Particle tracking revealed significant enhancement in the mobility of biocompatible quantum dots within fibrosarcoma cells versus their healthy counterparts, fibroblasts, as well as in actin destabilized fibroblasts versus untreated fibroblasts. Analyzing the displacement distributions provided insight into …


Assembly And Function Of Myosin Ii On Ultraviolet/Ozone Patterned Trimethylchlorosilane Substrates, Hideyo Takatsuki, Madhukar Kolli, Kevin Rice, B. Day, Shinichi Asano, Mashiur Rahman, Yue Zhang, Ryoki Ishikawa, Kazuhiro Kohama, Eric Blough Apr 2014

Assembly And Function Of Myosin Ii On Ultraviolet/Ozone Patterned Trimethylchlorosilane Substrates, Hideyo Takatsuki, Madhukar Kolli, Kevin Rice, B. Day, Shinichi Asano, Mashiur Rahman, Yue Zhang, Ryoki Ishikawa, Kazuhiro Kohama, Eric Blough

B. Scott Day

The study of biomolecular motors represents a rapidly and progressing field of nanobiotechnology. Here, we present a simple method for patterning myosin II on a microstructured surface. Our findings indicate that UV/ozone treatment can be used to alter the hydrophobicity of trimethyl-chloro-silane (TMCS) coated glass surfaces, to alter protein binding, and effectively produce localized motor activity. Taken together, these data suggest that photoreactive patterning may be useful for the selective localization of functional myosin II motor tracks.


Assembly And Function Of Myosin Ii On Ultraviolet/Ozone Patterned Trimethylchlorosilane Substrates, Hideyo Takatsuki, Madhukar Kolli, Kevin Rice, B. Day, Shinichi Asano, Mashiur Rahman, Yue Zhang, Ryoki Ishikawa, Kazuhiro Kohama, Eric Blough May 2013

Assembly And Function Of Myosin Ii On Ultraviolet/Ozone Patterned Trimethylchlorosilane Substrates, Hideyo Takatsuki, Madhukar Kolli, Kevin Rice, B. Day, Shinichi Asano, Mashiur Rahman, Yue Zhang, Ryoki Ishikawa, Kazuhiro Kohama, Eric Blough

Kevin M Rice

The study of biomolecular motors represents a rapidly and progressing field of nanobiotechnology. Here, we present a simple method for patterning myosin II on a microstructured surface. Our findings indicate that UV/ozone treatment can be used to alter the hydrophobicity of trimethyl-chloro-silane (TMCS) coated glass surfaces, to alter protein binding, and effectively produce localized motor activity. Taken together, these data suggest that photoreactive patterning may be useful for the selective localization of functional myosin II motor tracks.


Assembly And Function Of Myosin Ii On Ultraviolet/Ozone Patterned Trimethylchlorosilane Substrates, Hideyo Takatsuki, Madhukar Kolli, Kevin Rice, B. Day, Shinichi Asano, Mashiur Rahman, Yue Zhang, Ryoki Ishikawa, Kazuhiro Kohama, Eric Blough Jan 2013

Assembly And Function Of Myosin Ii On Ultraviolet/Ozone Patterned Trimethylchlorosilane Substrates, Hideyo Takatsuki, Madhukar Kolli, Kevin Rice, B. Day, Shinichi Asano, Mashiur Rahman, Yue Zhang, Ryoki Ishikawa, Kazuhiro Kohama, Eric Blough

Eric Blough

The study of biomolecular motors represents a rapidly and progressing field of nanobiotechnology. Here, we present a simple method for patterning myosin II on a microstructured surface. Our findings indicate that UV/ozone treatment can be used to alter the hydrophobicity of trimethyl-chloro-silane (TMCS) coated glass surfaces, to alter protein binding, and effectively produce localized motor activity. Taken together, these data suggest that photoreactive patterning may be useful for the selective localization of functional myosin II motor tracks.