Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Two-Dimensional Nanomaterials And Nanocomposites For Sensing, Separation, And Energy Applications, Md Ashiqur Rahman Aug 2023

Two-Dimensional Nanomaterials And Nanocomposites For Sensing, Separation, And Energy Applications, Md Ashiqur Rahman

Theses and Dissertations

Two-dimension (2D) nanomaterials have gained popularity for the last few decades due to their excellent mechanical, electrical and thermal properties. These unique properties of 2D nanomaterials can be exploited in various applications specially in sensor, energy, and separation devices. In this study, the sensing and energy generation performance of PVDF/PAni fiber mat systems made by the forcespinning method with and without graphene coating. The graphene-coated nanocomposites show an average output voltage of 75 mV (peak-to-peak) which is 300% higher compared to bare fiber mats and an output current of 24 mA (peak-to-peak) by gentle finger pressing. Moreover, the graphene-coated PVDF/PAni …


Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell Jan 2022

Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell

Theses and Dissertations

This work centers on the development and the down-selection of nano-manufactured devices to be used in conjunction with Raman spectroscopy for probing a branched chain amino acid. The nano-manufactured devices integrate plasmonic nanoantennas for the purpose of amplifying molecular fingerprints, which are otherwise difficult to detect, through Surface Enhanced Raman Spectroscopy (SERS). Plasmonic nanostructures can be utilized for a variety of biomedical and biochemical applications to detect the characteristic fingerprint provided by Raman Spectroscopy. The nano-manufactured devices create an electric field that amplifies minute perturbations and raises the signal above background noise. This may provide a deeper understanding of signal …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe Jan 2019

Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe

Theses and Dissertations

We studied the possibility of achieving an order of magnitude reduction in the energy dissipation needed to write bits in perpendicular magnetic tunnel junctions (p-MTJs) by simulating the magnetization dynamics under a combination of resonant surface acoustic waves (r-SAW) and spin-transfer-torque (STT). The magnetization dynamics were simulated using the Landau-Lifshitz-Gilbert equation under macrospin assumption with the inclusion of thermal noise. We studied such r-SAW assisted STT switching of nanomagnets for both in-plane elliptical and circular perpendicular magnetic anisotropy (PMA) nanomagnets and show that while thermal noise affects switching probability in in-plane nanomagnets, the PMA nanomagnets are relatively robust to the …


Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi Jan 2019

Differential Mobility Classifiers In The Non-Ideal Assembly, Thamir Alsharifi

Theses and Dissertations

The differential mobility classifier (DMC) is one of the core components in electrical mobility particle sizers for sizing sub-micrometer particles. Designing the DMC requires knowledge of the geometrical and constructional imperfection (or tolerance). Studying the effects of geometrical imperfection on the performance of the DMC is necessary to provide manufacturing tolerance and it helps to predict the performance of geometrically imperfect classifiers, as well as providing a calibration curve for the DMC. This thesis was accomplished via studying the cylindrical classifier and the parallel plate classifier. The numerical model was built using the most recent versions of COMSOL Multiphysics® …


Numerical And Experimental Studies Of Atomic Layer Deposition For Sustainability Improvement, Dongqing Pan May 2016

Numerical And Experimental Studies Of Atomic Layer Deposition For Sustainability Improvement, Dongqing Pan

Theses and Dissertations

Atomic layer deposition (ALD) is an approved nano-scale thin films fabrication technique with remarkable uniformity and conformity in surface geometry. This dissertation presents numerical and experimental studies to investigate the transient physical and chemical ALD process in order to improve its sustainability performance in terms of throughput, wastes and emissions.

To be specific, in this dissertation, the transient process of ALD is studied extensively through both numerical and experimental approaches to find the influential factors on the two main critical sustainability issues: low throughput and negative environmental impacts. Different numerical schemes are developed and studied for ALD process simulations. In …


Effects Of Surface Topography And Vibrations On Wetting: Superhydrophobicity, Icephobicity And Corrosion Resistance, Rahul Ramachandran May 2016

Effects Of Surface Topography And Vibrations On Wetting: Superhydrophobicity, Icephobicity And Corrosion Resistance, Rahul Ramachandran

Theses and Dissertations

Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant.

Recent advances in micro/nanotechnology have …


Ultrafine Particle Generation And Measurement, Qiaoling Liu Jan 2015

Ultrafine Particle Generation And Measurement, Qiaoling Liu

Theses and Dissertations

Ultrafine particles (UFPs) with diameters smaller than 100 nm are omnipresent in ambient air. They are important sources for fine particles produced through the agglomeration and/or vapor condensation. With their unique properties, UFPs have also been manufactured for industrial applications. But, from the toxicological and health perspective, ultrafine particles with high surface-to-volume ratios often have high bio-availability and toxicity. Many recent epidemiologic studies have evidence UFPs are highly relevant to human health and disease. In order to better investigate UFPs, better instrumentation and measurement techniques for UFPs are thus in need. The overall objective of this dissertation is to advance …