Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Mechanical Engineering

2016

Institution
Keyword
Publication

Articles 1 - 20 of 20

Full-Text Articles in Nanoscience and Nanotechnology

Experimentally Validated 3d Md Model For Afm-Based Tip-Based Nanomanufacturing, Rapeepan Promyoo Dec 2016

Experimentally Validated 3d Md Model For Afm-Based Tip-Based Nanomanufacturing, Rapeepan Promyoo

Open Access Dissertations

In order to control AFM-based TBN to produce precise nano-geometry efficiently, there is a need to conduct a more focused study of the effects of different parameters, such as feed, speed, and depth of cut on the process performance and outcome. This is achieved by experimentally validating a MD simulation model of nanomachining, and using it to conduct parametric studies to guide AFM-based TBN. A 3D MD model with a larger domain size was developed and used to gain a unique insight into the nanoindentation and nanoscratching processes such as the effect of tip speed (e.g. effect of tip speed …


Carbon Nanotube Thermal Interfaces And Related Applications, Stephen L. Hodson Dec 2016

Carbon Nanotube Thermal Interfaces And Related Applications, Stephen L. Hodson

Open Access Dissertations

The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical conducting elements. Within the community of TIM engineers, the vision driving the development of CNT TIMs was born from measurements that revealed impressively high thermal conductivities of individual CNTs. This vision was …


Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso Dec 2016

Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso

Open Access Dissertations

Electronics and nanotechnology is constantly demanding a decrease in size of fabricated nanoscale features. This decrease in size has become much more difficult recently due to the limited resolution of optical systems that are fundamental to many nanofabrication methods. A lot of effort has been made to fabricate devices smaller than the diffraction limit of light. Creating devices that are capable of confining fields by means of interference patterns of propagating wave modes and surface plasmon, has proven successful to confine light into smaller spot sizes.

Zone plate diffraction lenses generate spots with dimensions very close to the diffraction limit. …


Liquid Metal Particle Popping: Nanoscale To Macroscale, Trevor R. Lear Dec 2016

Liquid Metal Particle Popping: Nanoscale To Macroscale, Trevor R. Lear

Open Access Theses

Liquid metal nanoparticles can be used to produce stretchable electronic devices. Understanding the mechanical properties of liquid metal nanoparticles is crucial to optimizing their use in various applications, especially printing of flexible, stretchable electronics. Smaller nanoparticles are desired for high-resolution printing and compatibility with existing scalable manufacturing methods; however, they contain less liquid metal and are more difficult to rupture than larger particles, making them less desirable for post-processing functionality. This study investigates the mechanics of liquid metal particle rupture as a function of particle size. We employ compression of particle films to characterize the composition of the particle core …


Molybdenum Disulfide-Conducting Polymer Composite Structures For Electrochemical Biosensor Applications, Hongxiang Jia Nov 2016

Molybdenum Disulfide-Conducting Polymer Composite Structures For Electrochemical Biosensor Applications, Hongxiang Jia

USF Tampa Graduate Theses and Dissertations

Lactic acid is widely existing in human bodies, animals and microorganisms. Recently, using biosensor to detect the concentration of lactic acid and diagnose disease have attracted great research and development interests. Nanocomposites is one of the best material used for biosensor because their wonderful conductivity, optical and electrochemical properties. In the study, MoS2 and polypyrrole (PPY) are used for the composite material electrode. To determine whether lactate oxidase (LOD) was helpful for the biosensor’s detective properties, both PPY-MoS2 film with LOD and PPY-MoS2 film without LOD are being tested. The fourier transform infrared spectroscopy (FTIR) and Raman …


An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall Oct 2016

An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall

Mechanical & Aerospace Engineering Theses & Dissertations

The indentation size effect (ISE) in metals is described as the rise in hardness with decreasing depth of indentation and contradicts conventional plasticity behavior. The goal of this dissertation is to further examine the fundamental dislocation mechanisms that may be contributing to the so-called indentation size effect. In this work, we examined several metals and alloys including 99.999% Aluminum (SFE ~200 mJ/m2), 99.95% Nickel (SFE ~125 mJ/m2), 99.95% Silver (SFE ~22 mJ/m2), and three alloys, alpha brass 70/30 (SFE >10 mJ/m2), 70/30 nickel copper (SFE ~100 mJ/ …


Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam Aug 2016

Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam

Open Access Dissertations

Silicon nanowires are promising building blocks for high-performance electronics and chemical/biological sensing devices due to their ultra-small body and high surface-to-volume ratios. However, the lack of the ability to assemble and position nanowires in a highly controlled manner still remains an obstacle to fully exploiting the substantial potential of nanowires. Here we demonstrate a one-step method to synthesize intrinsic and doped silicon nanowires for device applications. Sub-diffraction limited nanowires as thin as 60 nm are synthesized using laser direct writing in combination with chemical vapor deposition, which has the advantages of in-situ doping, catalyst-free growth, and precise control of position, …


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Numerical And Experimental Studies Of Atomic Layer Deposition For Sustainability Improvement, Dongqing Pan May 2016

Numerical And Experimental Studies Of Atomic Layer Deposition For Sustainability Improvement, Dongqing Pan

Theses and Dissertations

Atomic layer deposition (ALD) is an approved nano-scale thin films fabrication technique with remarkable uniformity and conformity in surface geometry. This dissertation presents numerical and experimental studies to investigate the transient physical and chemical ALD process in order to improve its sustainability performance in terms of throughput, wastes and emissions.

To be specific, in this dissertation, the transient process of ALD is studied extensively through both numerical and experimental approaches to find the influential factors on the two main critical sustainability issues: low throughput and negative environmental impacts. Different numerical schemes are developed and studied for ALD process simulations. In …


Effects Of Surface Topography And Vibrations On Wetting: Superhydrophobicity, Icephobicity And Corrosion Resistance, Rahul Ramachandran May 2016

Effects Of Surface Topography And Vibrations On Wetting: Superhydrophobicity, Icephobicity And Corrosion Resistance, Rahul Ramachandran

Theses and Dissertations

Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant.

Recent advances in micro/nanotechnology have …


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Physics Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from …


Atomic Force Microscopy Based Dna Analysis, Drew Creighton May 2016

Atomic Force Microscopy Based Dna Analysis, Drew Creighton

Mechanical Engineering Undergraduate Honors Theses

This report explores dry and wet scanning of a surface and DNA pickup using an AFM, as well as fluorescent staining of DNA. Dry and wet scans of DNA were obtained using a cantilever AFM tip in tapping mode. Dry scans were found to be clearer than wet scans; however, the drying process was found to decrease the thickness of DNA 2–4 times less than its original thickness. Alternately, wet scans were found to be less clear than dry scans and introduced more noise into the images obtained. Additionally, DNA kept its initial thickness during wet scanning. DNA was capable …


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Mechanical Engineering Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from …


Al/Ti Nanostructured Multilayers: From Mechanical, Tribological, To Corrosion Properties, Sina Izadi Apr 2016

Al/Ti Nanostructured Multilayers: From Mechanical, Tribological, To Corrosion Properties, Sina Izadi

USF Tampa Graduate Theses and Dissertations

Nanostructured metallic multilayers (NMMs) are well-known for their high strength in smaller bilayer thicknesses. Six Al/Ti (NMM) with different individual layer thickness were tested for their mechanical hardness using a nanoindentation tool. Individual layer thicknesses were chosen carefully to cover the whole confined layer slip (CLS) model. Nano-hardness had a reverse relation with the square root of individual layer thickness and reached a steady state at ~ 5 nm bilayer thickness. Decreasing the layer bilayer thickness from ~ 104 nm to ~ 5 nm, improved the mechanical hardness up to ~ 101%. Residual stresses were measured using grazing incident X-ray …


Ultra-Thin Boron Nitride Films By Pulsed Laser Deposition: Plasma Diagnostics, Synthesis, And Device Transport, Nicholas Robert Glavin Apr 2016

Ultra-Thin Boron Nitride Films By Pulsed Laser Deposition: Plasma Diagnostics, Synthesis, And Device Transport, Nicholas Robert Glavin

Open Access Dissertations

This work describes, for the first time, a pulsed laser deposition (PLD) technique for growth of large area, stoichiometric ultra-thin hexagonal and amorphous boron nitride for next generation 2D material electronics. The growth of boron nitride, in this case, is driven by the high kinetic energies and chemical reactivities of the condensing species formed from physical vapor deposition (PVD) processes, which can facilitate growth over large areas and at reduced substrate temperatures. The use of optical emission spectroscopy during plasma growth provides insight into chemistry, kinetic energies, time of flight data, and spatial distributions within a PVD plasma plume ablated …


An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur Jan 2016

An Assessment Of The Validity Of The Kinetic Model For Liquid-Vapor Phase Change By Examining Cryogenic Propellants, Kishan Bellur

Dissertations, Master's Theses and Master's Reports

Evaporation is ubiquitous in nature and occurs even in a microgravity space envi- ronment. Long term space missions require storage of cryogenic propellents and an accurate prediction of phase change rates. Kinetic theory has been used to model and predict evaporation rates for over a century but the reported values of accommodation coefficients are highly inconsistent and no accurate data is available for cryogens. The proposed study involves a combined experimental and computational approach to ex- tract the accommodation coefficients. Neutron imaging is used as the visualization technique due to the difference in attenuation between the cryogen and the metallic …


Electrocatalysis In Li-S Batteries, Hesham I. Al Salem Jan 2016

Electrocatalysis In Li-S Batteries, Hesham I. Al Salem

Wayne State University Dissertations

Stabilizing polysulfide-shuttle process while ensuring high sulfur loading holds the key to realize high theoretical energy density (2500 Wh/kg) of lithium-sulfur (Li-S) batteries. Though several carbon based porous materials have been used as host structures for sulfur and its intermediate polysulfides, the week adsorption of polysulfides on carbon surface and its poor reaction kinetics limits them from practical application. Here, we preset a novel ‘electcatalysis’ approach to stabilize polysulfide shuttle process and also enhance its red-ox kinetics. As a proof of concept, we have studied in-detail using conventional electrocatalyst i.e Pt/graphene composite, further the same extended to cost-effective electrocatalysts such …


Structural, Dielectric, And Ferroelectric Characterization Of Lead-Free Calcium-Cerium Co-Doped Batio3 Ceramics, Juan Alberto Duran Jan 2016

Structural, Dielectric, And Ferroelectric Characterization Of Lead-Free Calcium-Cerium Co-Doped Batio3 Ceramics, Juan Alberto Duran

Open Access Theses & Dissertations

Structure, morphology, and regulation of the dielectric properties via close-composition intervals is demonstrated for variable-cerium, constant-calcium co-doped barium titanate (Ba0.80Ca0.20CeyTi1-yO3; y=0.0-0.25; referred to BCCT). The effect of variable Ce-content on the structure and dielectric properties of BCCT is investigated. X-ray diffraction spectra confirms the studied samples are mainly in BT tetragonal phase with a small secondary phase detected as CaTiO3 in BCCT for y = 0.20 and 0.25. However, the lattice parameter reduction was evident with increasing Ce-content. Composition-driven dielectric constant leap (4,000-5,500) was observed from intrinsic BCT to BCCT for (y = 0.0-0.04). The temperature dependent dielectric constant showed …


Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan Jan 2016

Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan

Masters Theses

"Zinc is an essential 'trace element' that supports immune systems, and is required for DNA synthesis, cell division, and protein synthesis. Zinc nanoparticles (Zn NP) has antibacterial properties and potential to be used in biodegradable printed electronics devices. The research presented here is about the synthesis of Zn NP and their potential use in transient electronics devices. In Paper 1, a technique of room temperature synthesis of Zn NP is reported using ball milling. Controlled amount of PVP was mixed in the solvent to stabilize the Zn particles and minimize cold welding during milling. The size of the produced Zn …


Study Of Role Of Meniscus And Viscous Forces During Liquid-Mediated Contacts Separation, Prabin Dhital Jan 2016

Study Of Role Of Meniscus And Viscous Forces During Liquid-Mediated Contacts Separation, Prabin Dhital

All Graduate Theses, Dissertations, and Other Capstone Projects

Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change …