Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Nanoscience and Nanotechnology

He+ Ion Irradiation On Tungsten Surface In Extreme Conditions, George I. Joseph, Jitendra Tripathi, Sivanandan S. Harilal, Ahmed Hassanein Aug 2014

He+ Ion Irradiation On Tungsten Surface In Extreme Conditions, George I. Joseph, Jitendra Tripathi, Sivanandan S. Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Higher melting point (3695K), lower sputtering yield and most importantly, lower in-bulk, and co-deposit retention at elevated temperature makes tungsten (W) as a potential candidate for plasma-facing component (PFC) in the international thermonuclear experimental reactor (ITER)-divertor. Helium ion (He+) bombardment on W can cause wide variety of microstructural evolution, such as dislocation loops, helium holes/bubbles and fibre-form nanostructures (Fuzz) etc. In this work, 100 eV He+ ion irradiation, at temperature ranges from 500°C to 1000°C, will be performed on mechanically polished mirror like W surfaces. The surface modification and compositional analysis, due to ion irradiation, will be …


Simulation Of Bio-Inspired Porous Battery Electrodes, Raju Gupta, R. Edwin Garcia, Rui Tu Aug 2014

Simulation Of Bio-Inspired Porous Battery Electrodes, Raju Gupta, R. Edwin Garcia, Rui Tu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advancement of technology has led to the increase in use of electronic devices. However, longer life of the rechargeable battery used in electronic devices is one of the biggest issue and demand in the world of electronic devices at present. Battery's performance is affected by the orientation, arrangement, shape and size, and porosity of the materials out of which battery electrodes are made. The goal of this project is to develop a set of numerical libraries that allow developing material micro structures that will allow increasing the performance of rechargeable batteries. We focused on the development of an algorithm that …


Bayesian Calibration Tool, Sveinn Palsson, Martin Hunt, Alejandro Strachan Aug 2014

Bayesian Calibration Tool, Sveinn Palsson, Martin Hunt, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Fitting a model to data is common practice in many fields of science. The models may contain unknown parameters and often, the goal is to obtain good estimates of them. A variety of methods have been developed for this purpose. They often differ in complexity, efficiency and accuracy and some may have very limited applications. Bayesian inference methods have recently become popular for the purpose of calibrating model's parameters. The way they treat unknown quantities is completely different from any classical methods. Even though the unknown quantity is a constant, it is treated as a random variable and the desired …


The Simulation Of Resonant Tunneling Diodes, Woodrow A. Gilbertson, Pengyu Long, Jim Fonseca, Gerhard Klimeck Aug 2014

The Simulation Of Resonant Tunneling Diodes, Woodrow A. Gilbertson, Pengyu Long, Jim Fonseca, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

The goal of this project is to improve the simulation of an electrical device known as a Resonant Tunneling Diode (RTD). Diodes are in most electronic devices today, but RTDs have 10 times greater switching speeds than regular diodes. This increase in efficiency would have impacts from supercomputers to the next big cell phone. The increased functionality of the simulation tool will come from implementing more recent mathematical solvers and modeling techniques. The simulation tool makes use of a variant of Non-Equilibrium Green Functions (NEGF) with an effective mass approximation. The two contacts are treated as equilibrium regions and the …


Development Of A Nanomanufacturing Process To Produce Atomically Thin Black Phosphorus, Andrew Stephens, Zhe Luo, Xianfan Xu Aug 2014

Development Of A Nanomanufacturing Process To Produce Atomically Thin Black Phosphorus, Andrew Stephens, Zhe Luo, Xianfan Xu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Atomically thin black phosphorus (phosphorene) has both unique and desirable properties that differ from bulk black phosphorus. Unlike graphene, phosphorene has a bandgap, which makes it potentially useful for applications in the next generation of transistors. Large-scale applications of phosphorene, like other 2D materials, are limited by current production methods. The most common method of making phosphorene is mechanical exfoliation, which can only produce small and irregular quantities. In this work we investigate a top-down method of producing phosphorene by using a scanning ultrafast laser to thin black phosphorus flakes. Because the bandgap of phosphorene increases as layers are removed, …


Thermoelectric (Te) Device Made Using Pbte Nanocrystal Coated Glass Fibers, Xiaoqin Zhu, Scott W. Finefrock, Yue Wu Aug 2014

Thermoelectric (Te) Device Made Using Pbte Nanocrystal Coated Glass Fibers, Xiaoqin Zhu, Scott W. Finefrock, Yue Wu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Around 60 % of the energy produced in the U.S. in 2013 was wasted and most of this was dissipated in the form of heat. Thermoelectric materials could potentially harvest part of the energy being wasted by converting heat energy into electrical energy. Lead telluride nanocrystals are an interesting thermoelectric material particularly for solution-based coating of flexible substrates. The purpose of this project is to develop a working thermoelectric device using p-n pairs of PbTe nanocrystal coated glass fibers. In this project, p- and n- type PbTe nanocrystals are synthesized in solution. Bare glass fibers are sequentially dipped in solutions …


Thermal Properties Of Soft Nanomaterials: Materials Synthesis And Fabrication, Meng Pan, Collier Miers, Amy Marconnet, Yu Han Aug 2014

Thermal Properties Of Soft Nanomaterials: Materials Synthesis And Fabrication, Meng Pan, Collier Miers, Amy Marconnet, Yu Han

The Summer Undergraduate Research Fellowship (SURF) Symposium

The properties of soft nanomaterials are hard to measure exactly due to their mechanical properties and unstable shape. In particular, hydrogels are a class of cross-linked polymers that can absorb large quantities of water changing their shape under the influence of various conditions such as humidity, temperature, and pH. This research addresses the fabrication of a material that has a significant contrast in properties under different conditions (e.g. temperature, wetting, and pH) and determine the physical mechanisms of heat transfer in this nanomaterial. The hydrogels are made using a several cycles of a freeze-thaw method. The method requires soluble material. …


Thermal Properties Of Soft Nanomaterials: Thermal Measurement Design, Yu Han, Meng Pan, Amy Marconnet, Collier Miers Aug 2014

Thermal Properties Of Soft Nanomaterials: Thermal Measurement Design, Yu Han, Meng Pan, Amy Marconnet, Collier Miers

The Summer Undergraduate Research Fellowship (SURF) Symposium

Soft materials like hydrogels have multiple tunable material properties because of their unique structures. Due to the ability to respond to stimuli like temperature or chemical environment, they have numerous applications in different fields like delivering drugs inside the human body and other medical uses. Details of the thermal transport mechanisms, as well as the overall thermal properties, are critical for a variety of applications. Multi-property measurements elucidate the underlying transport mechanisms in the soft materials. This research demonstrates a new methodology of measuring thermal properties of soft materials. This work uses the 3w method [1,2] for measuring the thermal …


Design And Fabrication Of A Novel Electrospinning System For Musculoskeletal Tissue Regeneration, Carter L. Chain, Maggie R. Del Ponte, Meng Deng, Feng Yue, Shihuan Kuang Aug 2014

Design And Fabrication Of A Novel Electrospinning System For Musculoskeletal Tissue Regeneration, Carter L. Chain, Maggie R. Del Ponte, Meng Deng, Feng Yue, Shihuan Kuang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Disease and injury to human tissue, especially musculoskeletal tissue, is a prevalent concern to the public, affecting millions of people each year. Current treatment options involving autografts and allografts are hindered by limited availability and risk of immunogenicity, respectively. In order to overcome these limitations, a transdisiplinary regenerative engineering strategy has emerged with a focus on the development of biomimetic scaffolds that closely mimic the properties of the native tissues. For example, the structure of muscle tissue is characterized by oriented muscle fibers. However, fabrication of aligned nanofiber structures that mimic the anisotropic organization of muscle presents significant engineering challenges. …


Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher Aug 2014

Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heterogeneous (nano) composites, manufactured by the densification of variously sized grains, represent an important and ubiquitous class of technologically relevant materials. Typical grain sizes in such materials range from macroscopic to a few nanometers. The morphology exhibited by such disordered materials is complex and intricately connected with its thermal and electrical transport properties. It is important to quantify the geometric features of these materials and simulate the fabrication process. Additionally, granular materials exhibit complex structural and mechanical properties that crucially govern their reliability during industrial use. In this work, we simulate the densification of soft deformable grains from a low-density …


Implementing The ‘Frozen Potential’ Approach On Adept To Analyze Thin Film Solar Cells, Abhirit Kanti, Raghu Vamsi Krishna Chavali, Mark S. Lundstrom Phd, Muhammad A. Alam Phd Aug 2014

Implementing The ‘Frozen Potential’ Approach On Adept To Analyze Thin Film Solar Cells, Abhirit Kanti, Raghu Vamsi Krishna Chavali, Mark S. Lundstrom Phd, Muhammad A. Alam Phd

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thin film solar cells have higher absorption coefficients than traditional Silicon solar cells. This means that lesser material is required to produce the same power output for a given intensity of solar illumination. As a result, they are less expensive, easier to install and have a wider range of applications. Analyzing the performance of cells requires separating the current into the photocurrent and the injection current based on the ‘Superposition Principle’. For thin film solar cells, this cannot be done using the conventional method. This is because these components are interdependent, and so modeling one’s behavior requires understanding the other. …


Functionalization And Length Fractionation Of Single-Wall Carbon Nanotubes, Nina A. Bragg, Jing Pan, Jong Hyun Choi Aug 2014

Functionalization And Length Fractionation Of Single-Wall Carbon Nanotubes, Nina A. Bragg, Jing Pan, Jong Hyun Choi

The Summer Undergraduate Research Fellowship (SURF) Symposium

Single-wall carbon nanotubes (SWCNTs) are a promising material for future biological applications such as imaging and targeted drug delivery. SWCNTs can be made soluble in water through surface functionalization, a priority for their use in biology. By studying the surface chemistry of SWCNTs, various functionalization methods can be accomplished without perturbing their electronic structure. This study probes the use of pyrene derivatives and phospholipids to non-covalently functionalize SWCNTs, maintaining useful surface properties. Phospholipids cross-linked to polyethylene glycol (PEG) or 1-pyrenebutyric acid conjugated to DNA is anchored onto the sidewalls of SWCNTs by hydrophobic interactions or π-stacking. The PEG/DNA portion is …