Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Roles Of Mtorc1 And Mtorc2 In Epilepsy And Network Changes Induced By Pten Loss, Erin R. Cullen Jan 2023

Roles Of Mtorc1 And Mtorc2 In Epilepsy And Network Changes Induced By Pten Loss, Erin R. Cullen

Graduate College Dissertations and Theses

Gene variants that hyperactivate the mTOR signaling pathway are a major cause of treatment-resistant epilepsy. The mTOR pathway influences neuron function through two distinct complexes, mTORC1 and mTORC2. Pten loss of function (LOF) hyperactivates both mTOR complexes, and is thus a useful model for testing the effects of independent mTORC1 or mTORC2 hyperactivity on epilepsy and underlying neuropathology. Here, we evaluated the impact of genetic inactivation of the mTOR complexes in two mouse models of Pten LOF-driven epilepsy. In a germline GFAP-driven Pten LOF model targeting neurons in the dentate gyrus and cerebellum, a mild epilepsy phenotype was not rescued …


Application Of Nanoparticles In Photodynamic Therapy And Increased Endothelial Permeability By Nanoparticle-Induced Activation Of Trpv4: Towards Improved Understanding Of Nanomedicine, Jaspreet Singh Nagi Jan 2022

Application Of Nanoparticles In Photodynamic Therapy And Increased Endothelial Permeability By Nanoparticle-Induced Activation Of Trpv4: Towards Improved Understanding Of Nanomedicine, Jaspreet Singh Nagi

Graduate College Dissertations and Theses

Nanotechnology holds great promise in biomedicine towards new diagnostics, new therapies, and improved patient outcomes. This work explores both the application of a novel nanoparticle in an established field of cancer treatment as well as an investigation of the human health implications of nanoparticles in intravenous applications. First, novel dye-linked zinc oxide nanoparticles (NPs) were investigated for use as photosensitizers (PS) for photodynamic therapy (PDT) due to their excellent thermal- and photo-stability. To overcome the limitations of current cancer treatments, we investigated the effectiveness of ZnO-Dye 847 NPs as a near infrared (NIR) PS in PDT. The NPs were surface …


Strengthening Mechanisms In Nanocrystalline Silver-Nickel Nanolayered Materials, Malcolm Ryan Pringle Jan 2021

Strengthening Mechanisms In Nanocrystalline Silver-Nickel Nanolayered Materials, Malcolm Ryan Pringle

Graduate College Dissertations and Theses

Among all metals, silver has the highest electrical conductivity but also is one of the softest materials under mechanical deformation. Therefore, developing means and methods for strengthening silver without reducing conductivity is critically important for its use as a conductive electrode material in various engineering applications such as solar cells and touchscreen displays. This thesis presents a molecular-dynamics simulation study of strengthening mechanisms by intercalating nanocrystalline silver films with amorphous nickel layers, characterizing the structure of nanolayered material prototypes obtained by sputtering deposition technique. The objectives of the thesis are three-fold: To study the effects of Ni layer thickness and …


Development Of A Physical And Electronic Model For Ruo2 Nanorod Rectenna Devices, Justin Dao Jan 2016

Development Of A Physical And Electronic Model For Ruo2 Nanorod Rectenna Devices, Justin Dao

Graduate College Dissertations and Theses

Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications.

In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning …


Investigating The Influence Of Gold Nanoparticles On The Photocatalytic And Catalytic Reactivity Of Porous Tungsten Oxide Microparticles, Daniel P. Depuccio Jan 2016

Investigating The Influence Of Gold Nanoparticles On The Photocatalytic And Catalytic Reactivity Of Porous Tungsten Oxide Microparticles, Daniel P. Depuccio

Graduate College Dissertations and Theses

Tungsten oxide (WO3) is a semiconducting transition metal oxide with interesting electronic, structural, and chemical properties that have been exploited in applications including catalysis, gas sensing, electrochromic displays, and solar energy conversion. Nanocrystalline WO3 can absorb visible light to catalyze heterogeneous photooxidation reactions. Also, the acidity of the WO3 surface makes this oxide a good thermal catalyst in the dehydration of alcohols to various industrially relevant chemicals. This dissertation explores the photocatalytic and thermal catalytic reactivity of nanocrystalline porous WO3 microparticles. Furthermore, investigations into the changes in WO3 reactivity are carried out after modifying the porous WO3 particles with gold …


The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang Jan 2015

The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang

Graduate College Dissertations and Theses

Σ3{111} coherent twin boundary (CTB) in face-centered-cubic (FCC) metals and alloys have been regarded as an efficient way to simultaneously increase strength and ductility at the nanoscale. Extensive study of dislocation-CTB interaction has been carried out by a combination of computer simulations, experiments and continuum theory. Most of them, however, are based on the perfect CTB assumption. A recent study [Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697-702.] has revealed the existence of intrinsic kink-like defects in CTBs of nanotwinned copper through nanodiffraction mapping technique, and has confirmed the effect of …


An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood Jan 2014

An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood

Graduate College Dissertations and Theses

The enhancement of strength of nanoscale materials such as face-centered cubic metal nanowires is well known and arises largely from processes mediated by high energy surface atoms. This leads to strong size effects in nanoscale plasticity; ,smaller is stronger. Yet, other factors, such as crystalline defects also contribute greatly to the mechanical properties. In particular, twin boundaries, which are pervasive and energetically favorable defects in face-centered cubic metal nanowires, have been shown to greatly enhance the strength, furthermore this increase in strength has been shown to be directly influenced by the twin density. However, attempts to control the …