Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Western University

Interface

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Development Of High Performance Cathodes: From Liquid To Solid-State Batteries, Sixu Deng Apr 2022

Development Of High Performance Cathodes: From Liquid To Solid-State Batteries, Sixu Deng

Electronic Thesis and Dissertation Repository

Lithium-ion batteries (LIBs) are critical for the development of electric vehicles (EVs) because of their higher operating voltages compared to other energy storage technologies. However, the development of start-of-the-art LIBs touched the ceiling because of three main challenges: safety risks, limited energy density, and high cost. Accordingly, all-solid-state lithium-ion batteries (ASSLIBs) have recently emerged as promising alternative batteries for next-generation EVs because of their ability to overcome the drawbacks of conventional LIBs. Whether in conventional liquid LIBs or ASSLIBs, cathode materials are crucial in determining the overall performance. Hence, this thesis focuses on understanding the degradation mechanism of cathode interfaces …


Advanced Materials For Lithium Ion Batteries:Surface And Interface Chemistry, Yulong Liu Oct 2017

Advanced Materials For Lithium Ion Batteries:Surface And Interface Chemistry, Yulong Liu

Electronic Thesis and Dissertation Repository

Lithium ion batteries (LIBs) are the indispensable energy storage devices in our modern society. LiFePO4, as one of the most promising cathode, are widely used in LIBs. However, impurity phases are formed in LiFePO4 during carbon coating process due to the intrinsic strong reducing atmosphere. Herein, as the first part of my work, interface chemistry of carbon coating on LiFePO4 are symmetrically investigated by advanced characterization techniques. Two distinct secondary phases are formed during carbon coating process at different condition. Moreover, secondary phase formation is controllable by changing the particle size of LiFePO4, annealing …