Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

University at Albany, State University of New York

Dielectrics

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Reliability Characterization Of A Low-K Dielectric Using Its Magnetoresistance As A Diagnostic Tool, Philip Alister Williams Dec 2021

Reliability Characterization Of A Low-K Dielectric Using Its Magnetoresistance As A Diagnostic Tool, Philip Alister Williams

Legacy Theses & Dissertations (2009 - 2024)

The introduction of low dielectric constant materials within the integrated circuit (IC) chip technology industry was a concerted effort to decrease the resistance-capacitance (RC) time delay inherent within the dielectric materials used as insulators. This stems from a demand for greater device density per IC chip and decreased feature sizes but is fast becoming a reliability issue. Concomitant with the demand for decreased feature sizes, also in adherence with Moore’s Law (which states that the number of devices on a die doubles every two years), is a reduction in device speed and performance due to device intra-level interconnection signal delays. …


Magnetoresistance Of A Low-K Dielectric, Brian Thomas Mcgowan Jan 2016

Magnetoresistance Of A Low-K Dielectric, Brian Thomas Mcgowan

Legacy Theses & Dissertations (2009 - 2024)

Low-k dielectrics have been incorporated into advanced computer chip technologies as a part of the continuous effort to improve computer chip performance. One drawback associated with the implementation of low-k dielectrics is the large leakage current which conducts through the material, relative to silica. Another drawback is that the breakdown voltage of low-k dielectrics is low, relative to silica [1]. This low breakdown voltage makes accurate reliability assessment of the failure mode time dependent dielectric breakdown (TDDB) in low-k dielectrics critical for the successful implementation of these materials. The accuracy with which one can assess this reliability is currently a …


Hexagonal Boron Nitride : Ubiquitous Layered Dielectric For Two-Dimensional Electronics, Nikhil Jain Jan 2015

Hexagonal Boron Nitride : Ubiquitous Layered Dielectric For Two-Dimensional Electronics, Nikhil Jain

Legacy Theses & Dissertations (2009 - 2024)

Hexagonal boron nitride (h-BN), a layer-structured dielectric with very similar crystalline lattice to that of graphene, has been studied as a ubiquitous dielectric for two-dimensional electronics. While 2D materials may lead to future platform for electronics, traditional thin-film dielectrics (e.g., various oxides) make highly invasive interface with graphene. Multiple key roles of h-BN in graphene electronics are explored in this thesis. 2D graphene/h-BN heterostructures are designed and implemented in diverse configurations in which h-BN is evaluated as a supporting substrate, a gate dielectric, a passivation layer, or an interposing barrier in “3D graphene” superlattice. First, CVD-grown graphene on h-BN substrate …


Study Of The Dielectric Function Of Graphene From Spectroscopic Ellipsometry And Electron Energy Loss Spectroscopy, Florence Joan Nelson Jan 2012

Study Of The Dielectric Function Of Graphene From Spectroscopic Ellipsometry And Electron Energy Loss Spectroscopy, Florence Joan Nelson

Legacy Theses & Dissertations (2009 - 2024)

For more than 60 years, semiconductor research has been advancing up the periodic table. The first transistor was made from germanium. This later gave way to silicon-based devices due to the latter's ability to form an excellent interface with thermally-grown oxide. Now for the last ~8 years, the focus has moved up one more row to carbon for post-CMOS devices in order to comply with the scaling limitations of Moore's law. However, for each of these, the measurements of film properties and dimensions have always been required for technological applications. These measurement methods often incorporate the use of light or …