Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

Nanocrystals

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Crystallite Phase And Orientation Determinations Of (Mn, Ga) As/Gaas-Crystallites Using Analyzed (Precession) Electron Diffraction Patterns, Ines Häusler, Stavros Nicolopoulos, Edgar F. Rauch, K. Volz, Peter Moeck Jan 2011

Crystallite Phase And Orientation Determinations Of (Mn, Ga) As/Gaas-Crystallites Using Analyzed (Precession) Electron Diffraction Patterns, Ines Häusler, Stavros Nicolopoulos, Edgar F. Rauch, K. Volz, Peter Moeck

Physics Faculty Publications and Presentations

Outline of the presentation:

1. Material system: (Mn,Ga)As/GaAs-crystallites

2. Structure analysis using Nano-beam Diffraction (NBD) Precession Electron Diffraction Technique (PED) --> Structure type I + II

3. Phase and orientation mapping using ASTAR

4. Conclusion


Automated Nanocrystal Orientation And Phase Mapping In The Transmission Electron Microscope On The Basis Of Precession Electron Diffraction, Edgar F. Rauch, Joaquin Portillo, Stavros Nicolopoulos, Daniel Bultreys, Sergei Rouvimov, Peter Moeck Mar 2010

Automated Nanocrystal Orientation And Phase Mapping In The Transmission Electron Microscope On The Basis Of Precession Electron Diffraction, Edgar F. Rauch, Joaquin Portillo, Stavros Nicolopoulos, Daniel Bultreys, Sergei Rouvimov, Peter Moeck

Physics Faculty Publications and Presentations

An automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope is described. It is primarily based on the projected reciprocal lattice geometry that is extracted from electron diffraction spot patterns. Precession electron diffraction patterns are especially useful for this purpose. The required hardware allows for a scanning-precession movement of the primary electron beam on the crystalline sample and can be interfaced to any older or newer mid-voltage transmission electron microscope (TEM). Experimentally obtained crystal phase and orientation maps are shown for a variety of samples. Comprehensive commercial and open-access crystallographic databases may be used …


Automated Crystal Phase And Orientation Mapping Of Nanocrystals In A Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov, Edgar F. Rauch, Stavros Nicolopoulos May 2009

Automated Crystal Phase And Orientation Mapping Of Nanocrystals In A Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov, Edgar F. Rauch, Stavros Nicolopoulos

Physics Faculty Publications and Presentations

An automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope (TEM) is described. It is based on the projected reciprocal lattice geometry that is extracted from electron diffraction spot patterns. The required hardware allows for a scanning‐precession movement of the primary electron beam on the crystalline sample and can be interfaced to any newer or older TEM. The software that goes with this hardware is flexible in its intake of raw data so that it can also create orientation and phase maps of nanocrystal from high resolution TEM (HRTEM) images. When the nanocrystals possess …


Precession Electron Diffraction And Its Advantages For Structural Fingerprinting In The Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov Jan 2009

Precession Electron Diffraction And Its Advantages For Structural Fingerprinting In The Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov

Physics Faculty Publications and Presentations

The foundations of precession electron diffraction in a transmission electron microscope are outlined. A brief illustration of the fact that laboratory-based powder X-ray diffraction fingerprinting is not feasible for nanocrystals is given. A procedure for structural fingerprinting of nanocrystals on the basis of structural data that can be extracted from precession electron diffraction spot patterns is proposed.


Lattice Fringe Fingerprinting In Two Dimensions With Database Support, Peter Moeck, B. Seipel, R. Bjorge, P. Fraundorf Jan 2006

Lattice Fringe Fingerprinting In Two Dimensions With Database Support, Peter Moeck, B. Seipel, R. Bjorge, P. Fraundorf

Physics Faculty Publications and Presentations

A brief introduction to lattice fringe fingerprinting in two dimensions (2D) with database support is given. The method is employed for the identification of the crystal phase of a small ensemble of nanocrystals. The enhanced viability of this method in aberration-corrected transmission electron microscopes (TEMs) and scanning TEMs (STEMs) is also illustrated.