Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang Jan 2023

Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) is of utmost significance due to its numerous practical uses in controlling flow at micro/nanoscales. In the present study, the time-periodic EOF of a viscoelastic fluid is statistically analyzed using a short 10:1 constriction microfluidic channel joining two reservoirs on either side. The flow is modeled using the Oldroyd-B (OB) model and the Poisson-Boltzmann model. The EOF of a highly concentrated polyacrylamide (PAA) aqueous solution is investigated under the combined effects of an alternating current (AC) electric field and a direct current (DC) electric field. Power-law degradation is visible in the energy spectra of the velocity fluctuations …


Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian Mar 2018

Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

The electroosmotic flow (EOF) of viscoelastic fluid in a long nanoslit is numerically studied to investigate the rheological property effect of Linear Phan-Thien-Tanner (LPTT) fluid on the fully developed EOF. The non-linear Poisson-Nernst-Planck equations governing the electric potential and the ionic concentration distribution within the channel are adopted to take into account the effect of the electrical double layer (EDL), including the EDL overlap. When the EDL is not overlapped, the velocity profiles for both Newtonian and viscoelastic fluids are plug-like and increase sharply near the charged wall. The velocity profile resembles that of pressure-driven flow when the EDL is …


Electrokinetic Phenomena In Pencil Lead-Based Microfluidics, Yashar Bashirzadeh, Venkat Maruthamuthu, Shizhi Qian Jan 2016

Electrokinetic Phenomena In Pencil Lead-Based Microfluidics, Yashar Bashirzadeh, Venkat Maruthamuthu, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Fabrication of microchannels and associated electrodes to generate electrokinetic phenomena often involves costly materials and considerable effort. In this study, we used graphite pencil-leads as low cost, disposable 3D electrodes to investigate various electrokinetic phenomena in straight cylindrical microchannels, which were themselves fabricated by using a graphite rod as the microchannel mold. Individual pencil-leads were employed as the micro-electrodes arranged along the side walls of the microchannel. Efficient electrokinetic phenomena provided by the 3D electrodes, including alternating current electroosmosis (ACEO), induced-charge electroosmosis (ICEO), and dielectrophoresis (DEP), were demonstrated by the introduced pencil-lead based microfluidic devices. The electrokinetic phenomena were characterized …