Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Louisiana Tech University

Doctoral Dissertations

Theses/Dissertations

Discipline
Keyword
Publication Year

Articles 61 - 64 of 64

Full-Text Articles in Nanoscience and Nanotechnology

Surface Morphology Of Platelet Adhesion Influenced By Activators, Inhibitors And Shear Stress, Melanie Groan Watson Oct 2010

Surface Morphology Of Platelet Adhesion Influenced By Activators, Inhibitors And Shear Stress, Melanie Groan Watson

Doctoral Dissertations

Platelet activation involves multiple events, one of which is the generation and release of nitric oxide (NO), a platelet aggregation inhibitor. Platelets simultaneously send and receive various agents that promote a positive and negative feedback control system during hemostasis. Although the purpose of platelet-derived NO is not fully understood, NO is known to inhibit platelet recruitment. NO's relatively large diffusion coefficient allows it to diffuse more rapidly than platelet agonists. It may thus be able to inhibit recruitment of platelets near the periphery of a growing thrombus before agonists have substantially accumulated in those regions.

Results from two studies in …


An Improved Layer-By-Layer Self-Assembly Technique To Generate Biointerfaces For Platelet Adhesion Studies: Dynamic Lbl, Juan Manuel Lopez Oct 2010

An Improved Layer-By-Layer Self-Assembly Technique To Generate Biointerfaces For Platelet Adhesion Studies: Dynamic Lbl, Juan Manuel Lopez

Doctoral Dissertations

Layer-by-layer self-assembly (LbL) is a technique that generates engineered nano-scale films, coatings, and particles. These nanoscale films have recently been used in multiple biomedical applications. Concurrently, microfabrication methods and advances in microfluidics are being developed and combined to create "Lab-on-a-Chip" technologies. The potential to perform complex biological assays in vitro as a first-line screening technique before moving on to animal models has made the concept of lab on a chip a valuable research tool.

Prior studies in the Biofluids Laboratory at Louisiana Tech have used layer-by-layer and in vitro biological assays to study thrombogenesis in a controlled, repeatable, engineered environment. …


Analysis Of Conjugated Polymer Nanotubules Formed By Template Wetting Nanofabrication, Steven D. Bearden Jr. Apr 2010

Analysis Of Conjugated Polymer Nanotubules Formed By Template Wetting Nanofabrication, Steven D. Bearden Jr.

Doctoral Dissertations

Semiconducting and optoelectric conjugated polymers have potential in micro and nano-electronic applications. Their widely tunable physical conformations and orientations make these polymers ideal material for engineering small scale devices. The polymers have been incorporated into several electronic devices including light-emitting diodes, solar cells, and field-effect transistors. Widespread adoption of these materials will not be a reality until the issues of poor device performance, short lifespans, and device degradation are resolved.

Nanostructures have been demonstrated to have improvements in molecular ordering and electronic transport. In the work presented here, tubular nanostructures of conjugated polymers fabricated by the template wetting nanofabrication process …


Multicomponent Patterning Of Nanocomposite Polymer And Nanoparticle Films Using Photolithography And Layer-By-Layer Self -Assembly, Javeed Shaikh Mohammed Apr 2006

Multicomponent Patterning Of Nanocomposite Polymer And Nanoparticle Films Using Photolithography And Layer-By-Layer Self -Assembly, Javeed Shaikh Mohammed

Doctoral Dissertations

In this dissertation, the fabrication, characterization, and application examples of 3D multicomponent nanocomposite micropatterns (MNMs) with precise spatial arrangements are described. The ability to produce such small-scale 3D structures with versatility in composition and structure is a new development based on the integration of nanoscale layer-by-layer (LbL) self-assembly and microscale photolithographic patterning, enabling construction of surfaces with microscale patterns that possess nanotopographies. The techniques used here are analogous to surface micromachining, except that the deposition materials are polymers, biological materials, and colloidal nanoparticles used to produce 3D MNMs. A key feature of the resulting 3D MNMs is that the physical …