Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Twisted Laminar Superconducting Composite: Mgb2 Embedded Carbon Nanotube Yarns, Ujjal Lamichhane, Gamage C. Dannangoda, Mkhitar Hobosyan, R. A. Shohan, A. Zakhidov, Karen S. Martirosyan Nov 2021

Twisted Laminar Superconducting Composite: Mgb2 Embedded Carbon Nanotube Yarns, Ujjal Lamichhane, Gamage C. Dannangoda, Mkhitar Hobosyan, R. A. Shohan, A. Zakhidov, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

Twisted laminar superconducting composite structures based on multi-wall carbon nanotube (MWCNT) yarns were crafted by integrating magnesium and boron homogeneous mixture into the carbon nanotube (CNT) aerogel sheets. After the ignition of the Mg–B–MWCNT system, under the controlled argon environment, the high exothermic reaction between magnesium (Mg) and boron (B) with stoichiometric ratio produced the MgB2@MWCNT superconducting composite yarns. The process was conducted under the controlled argon environment and uniform heating rate in the differential scanning calorimetry and thermogravimetric analyzer. The XRD analysis confirmed that the produced composite yarns contain nano and microscale inclusions of superconducting phase of MgB2. The …


Modeling And Simulation Of Janus-Like Nanoparticles Formation By Solid-Gas Exothermic Reactions, A. A. Markov, Karen S. Martirosyan Nov 2021

Modeling And Simulation Of Janus-Like Nanoparticles Formation By Solid-Gas Exothermic Reactions, A. A. Markov, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

Theoretical model for the simulation of synthesis of Janus-like particles (JP) consisting two different phases using the Carbon Combustion Synthesis of Oxides (CCSO) is presented. The model includes the variation of sample initial porosity, carbon concentration and oxygen flow rate used to predict the formation of JP features. The two temperature (2T) combustion model of chemically active submicron-dispersed mixture of two phases including ferroelectric and ferromagnetic was implemented and assessed by using the experimentally estimated activation energy of 112±3.3 kJ/mol and combustion temperature. The experimental values allowed to account the thermal and concentration expansion effect along with the dispersion by …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Tailoring Plasmon Excitations In Alpha − T 3 Armchair Nanoribbons, Andrii Iurov, Liubov Zhemchuzhna, Godfrey Gumbs, Danhong Huang, Paula Fekete, Farhana Anwar, Dipendra Dahal, Nicholas Weekes Oct 2021

Tailoring Plasmon Excitations In Alpha − T 3 Armchair Nanoribbons, Andrii Iurov, Liubov Zhemchuzhna, Godfrey Gumbs, Danhong Huang, Paula Fekete, Farhana Anwar, Dipendra Dahal, Nicholas Weekes

Publications and Research

We have calculated and investigated the electronic states, dynamical polarization function and the plasmon excitations for α − T 3 nanoribbons with armchair-edge termination. The obtained plasmon dispersions are found to depend significantly on the number of atomic rows across the ribbon and the energy gap which is also determined by the nanoribbon geometry. The bandgap appears to have the strongest effect on both the plasmon dispersions and their Landau damping. We have determined the conditions when relative hopping parameter α of an α − T 3 lattice has a strong effect on the plasmons which makes our material distinguished …


Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, Shireen Adenwalla Jan 2021

Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, Shireen Adenwalla

Shireen Adenwalla Papers

Domain walls in magnetic thin films are being explored for memory applications and the speed at which they move has acquired increasing importance. Magnetic fields and currents have been shown to drive domain walls with speeds exceeding 500 m/s. We investigate another approach to increase domain wall velocities, using high frequency surface acoustic waves to create standing strain waves in a 3 micron wide strip of magnetic film with perpendicular anisotropy. Our measurements, at a resonant frequency of 248.8 MHz, indicate that domain wall velocities increase substantially, even at relatively low applied voltages. Our findings suggest that the strain wave …


Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali Jan 2021

Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali

Electrical & Computer Engineering Faculty Publications

At or near atmospheric pressure, most transient discharges, particularly in molecular gases or gas mixture containing molecular gases, result in a space charge dominated transport called a streamer discharge. The excited species generation in such discharges forms the basis for plasma chemistry in most technological applications. In this paper, we simulate the propagation of streamers in atmospheric pressure N2 to understand the energy partitioning in the formation of various excited species and compare the results to a uniform Townsend discharge. The model is fully two-dimensional with azimuthal symmetry. The results show a significantly larger fraction of the energy goes …