Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Electrical and Computer Engineering

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 76

Full-Text Articles in Nanoscience and Nanotechnology

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew Mar 2024

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We develop six-dimensional single-molecule orientation-localization microscopy (SMOLM) to measure the 3D positions and 3D orientations simultaneously of single fluorophores. We show how careful optimization of phase and polarization modulation components can encode phase, polarization, and angular spectrum information from each fluorescence photon into a microscope’s dipole-spread function. We used the transient binding and blinking of Nile red (NR) to characterize the helical structure of fibrils formed by designed amphipathic peptides, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. We also deployed merocyanine 540 to uncover the interfacial architectures of biomolecular condensates.


Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, Cheolgi Kim Jan 2024

Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, Cheolgi Kim

Bioelectronics Publications

Conventional magnetophoresis techniques for manipulating biocarriers and cells predominantly rely on large-scale electromagnetic systems, which is a major obstacle to the development of portable and miniaturized cell-on-chip platforms. Herein, a novel magnetic engineering approach by tailoring a nanoscale notch on a disk micromagnet using two-step optical and thermal lithography is developed. Versatile manipulations are demonstrated, such as separation and trapping, of carriers and cells by mediating changes in the magnetic domain structure and discontinuous movement of magnetic energy wells around the circumferential edge of the micromagnet caused by a locally fabricated nano-notch in a low magnetic field system. The motion …


Inverse Engineering Of Absorption And Scattering In Nanoparticles: A Machine Learning Approach, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Nov 2023

Inverse Engineering Of Absorption And Scattering In Nanoparticles: A Machine Learning Approach, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

We use a region-specified machine learning approach to inverse design highly absorptive multilayer plasmonic nanoparticles. We demonstrate the design of particles with a wide range of absorption to scattering ratios (i.e., cloaked absorbers and bright absorbers) and for different visible wavelengths.


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Region-Specified Inverse Design Of Absorption And Scattering In Nanoparticles By Using Machine Learning, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Apr 2023

Region-Specified Inverse Design Of Absorption And Scattering In Nanoparticles By Using Machine Learning, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

Machine learning provides a promising platform for both forward modeling and the inverse design of photonic structures. Relying on a data-driven approach, machine learning is especially appealing for situations when it is not feasible to derive an analytical solution for a complex problem. There has been a great amount of recent interest in constructing machine learning models suitable for different electromagnetic problems. In this work, we adapt a region-specified design approach for the inverse design of multilayered nanoparticles. Given the high computational cost of dataset generation for electromagnetic problems, we specifically investigate the case of a small training dataset, enhanced …


Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew Dec 2022

Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving …


Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim May 2022

Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of the optical fighter using a two-photon polymerization process on a photosensitive polymer by a three-dimensional micromachining device. The three-dimensional microscopic optical structure having a hinged optical layer pivotally connected to a distal portion of a suspended structure. A reflective layer is deposited on a mirror surface of the hinged optical layer while in an open position. The hinged optical layer is subsequently positioned in the closed position to align the mirror surface to at least partially reflect a light signal back …


Method Of Making Hinged Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim Mar 2022

Method Of Making Hinged Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A method is provided for fabricating a passive optical sensor on a tip of an optical fiber. The method includes perpendicularly cleaving a tip of an optical fiber and mounting the tip of the optical fiber in a specimen holder of a photosensitive polymer three-dimensional micromachining machine. The method includes forming a three-dimensional microscopic optical structure within the photosensitive polymer that comprises a two cavity Fabry-Perot Interferometer (FPI) having a hinged optical layer that is pivotally coupled to a suspended structure. The method includes removing an uncured portion of the photosensitive polymer using a solvent. The method includes depositing a …


Facile One-Step Hydrothermal Method For Nico2s4/Rgo Nanocomposite Synthesis For Efficient Hybrid Supercapacitor Electrodes, Ahmed Mysara, Sayed Y. Attia, Fouad I. El-Hosiny, M A. Sadek, Saad G. Mohamed, M M. Rashad Feb 2022

Facile One-Step Hydrothermal Method For Nico2s4/Rgo Nanocomposite Synthesis For Efficient Hybrid Supercapacitor Electrodes, Ahmed Mysara, Sayed Y. Attia, Fouad I. El-Hosiny, M A. Sadek, Saad G. Mohamed, M M. Rashad

Nanotechnology Research Centre

Spinel nickel-cobalt sulfide (NiCo2S4) supported on reduced graphene oxide (rGO) was fabricated through a facile one-step hydrothermal method for energy storage applications. The distribution of the NiCo2S4 nanoparticles on the rGO surface was found to improve the supercapacitive performance of the assembled device. The NiCo2S4/rGO nanocomposite exhibits outstanding electrochemical behavior with a capacity (C)/specific capacitance (Cs) of 536 C g−1/1072 F g−1 at a current density of 1 A g−1. To further investigate the electrochemical behavior of the NiCo2S4/rGO nanocomposite, a hybrid supercapacitor (HSC) was constructed utilizing a NiCo2S4/rGO positive electrode and an activated carbon …


An Archimedes' Screw For Light, Emanuele Galiffi, Paloma A. Huidobro, J. B. Pendry Jan 2022

An Archimedes' Screw For Light, Emanuele Galiffi, Paloma A. Huidobro, J. B. Pendry

Advanced Science Research Center

An Archimedes’ Screw captures water, feeding energy into it by lifting it to a higher level. We introduce the first instance of an optical Archimedes’ Screw, and demonstrate how this system is capable of capturing light, dragging it and amplifying it. We unveil new exact analytic solutions to Maxwell’s Equations for a wide family of chiral space-time media, and show their potential to achieve chirally selective amplification within widely tunable parity-time-broken phases. Our work, which may be readily implemented via pump-probe experiments with circularly polarized beams, opens a new direction in the physics of time-varying media by merging the rising …


Flexible Battery-Less Wireless Glucose Monitoring System, Saikat Banerjee, Gymama Slaughter Jan 2022

Flexible Battery-Less Wireless Glucose Monitoring System, Saikat Banerjee, Gymama Slaughter

Bioelectrics Publications

In this work, a low power microcontroller-based near field communication (NFC) interfaced with a flexible abiotic glucose hybrid fuel cell is designed to function as a battery-less glucose sensor. The abiotic glucose fuel cell is fabricated by depositing colloidal platinum (co–Pt) on the anodic region and silver oxide nanoparticles-multiwalled carbon nanotubes (Ag2O-MWCNTs) composite on the cathodic region. The electrochemical behavior is characterized using cyclic voltammetry and chronoamperometry. This glucose hybrid fuel cell generated an open circuit voltage of 0.46 V, short circuit current density of 0.444 mA/cm2, and maximum power density of 0.062 mW/cm2 at 0.26 V …


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie Nov 2021

Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie

FIU Electronic Theses and Dissertations

Despite the many governmental and medicinal restrictions created to combat the opioid epidemic in the United States, opioid abuse and overdose rates continue to rise. The development of an aptamer-based voltammetric sensor and biosensor is described in this dissertation. The aim was to develop a low-cost, sensitive, and specific aptamer-based sensor for on-site, label-free determination of codeine and fentanyl in biological fluids. To do this, the surfaces of screen-printed carbon electrodes (SPCE) were modified with gold nanoparticles (AuNPs), followed by the addition of single-stranded DNA aptamers. These were covalently bound to the electrode surface. Operations of the sensors were collected …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Tailoring Plasmon Excitations In Alpha − T 3 Armchair Nanoribbons, Andrii Iurov, Liubov Zhemchuzhna, Godfrey Gumbs, Danhong Huang, Paula Fekete, Farhana Anwar, Dipendra Dahal, Nicholas Weekes Oct 2021

Tailoring Plasmon Excitations In Alpha − T 3 Armchair Nanoribbons, Andrii Iurov, Liubov Zhemchuzhna, Godfrey Gumbs, Danhong Huang, Paula Fekete, Farhana Anwar, Dipendra Dahal, Nicholas Weekes

Publications and Research

We have calculated and investigated the electronic states, dynamical polarization function and the plasmon excitations for α − T 3 nanoribbons with armchair-edge termination. The obtained plasmon dispersions are found to depend significantly on the number of atomic rows across the ribbon and the energy gap which is also determined by the nanoribbon geometry. The bandgap appears to have the strongest effect on both the plasmon dispersions and their Landau damping. We have determined the conditions when relative hopping parameter α of an α − T 3 lattice has a strong effect on the plasmons which makes our material distinguished …


Piezo-Tribo Dual Effect Hybrid Nanogenerators For Health Monitoring, Sk Md Ali Zaker Shawon, Andrew Xu Sun, Valeria Suarez Vega, Brishty Deb Chowdhury, Phong Tran, Zaida D. Carballo, Jim Aica Tolentino, Jianzhi Li, Muhammad Sufian Rafaqut, Serena Danti, Mohammed Jasim Uddin Apr 2021

Piezo-Tribo Dual Effect Hybrid Nanogenerators For Health Monitoring, Sk Md Ali Zaker Shawon, Andrew Xu Sun, Valeria Suarez Vega, Brishty Deb Chowdhury, Phong Tran, Zaida D. Carballo, Jim Aica Tolentino, Jianzhi Li, Muhammad Sufian Rafaqut, Serena Danti, Mohammed Jasim Uddin

Electrical and Computer Engineering Faculty Publications and Presentations

Over the years, nanogenerators for health monitoring have become more and more attractive as they provide a cost-effective and continuous way to successfully measure vital signs, physiological status, and environmental changes in/around a person. Using such sensors can positively affect the way healthcare workers diagnose and prevent life-threatening conditions. Recently, the dual piezo-tribological effect of hybrid nanogenerators (HBNGs) have become a subject of investigation, as they can provide a substantial amount of data, which is significant for healthcare. However, real-life exploitation of these HBNGs in health monitoring is still marginal. This review covers piezo-tribo dual-effect HBNGs that are used as …


Polymer Based Triboelectric Nanogenerator For Cost‐Effective Green Energy Generation And Implementation Of Surface‐Charge Engineering, Diana Lopez, Aminur Rashid Chowdhury, Abu Masa Abdullah, Muhtasim Ul Karim Sadaf, Isaac Martinez, Brishty Deb Chowdhury, Serena Danti, Christopher J. Ellison, Karen Lozano, Mohammed Jasim Uddin Mar 2021

Polymer Based Triboelectric Nanogenerator For Cost‐Effective Green Energy Generation And Implementation Of Surface‐Charge Engineering, Diana Lopez, Aminur Rashid Chowdhury, Abu Masa Abdullah, Muhtasim Ul Karim Sadaf, Isaac Martinez, Brishty Deb Chowdhury, Serena Danti, Christopher J. Ellison, Karen Lozano, Mohammed Jasim Uddin

Chemistry Faculty Publications and Presentations

Performance of triboelectric nanogenerators for harvesting mechanical energy from the ambient environment has been limited by structural complexity, cost-effectiveness, and mechanical weakness of materials. Herein, a cost-effective vertical contact separation mode triboelectric nanogenerator using polyethylene (PE) and polycarbonate (PC) in a regular digital versatile disc is reported. This cost-effective nanogenerator with simplified structures is able to generate an open-circuit voltage of 215.3 V and short-circuit current of 80 μA. The effects of the distance of impact and the air gap between the triboelectric layers have also been tested from 3 to 9 cm, and 0.25 to 1 cm, respectively. It …


An Ultrabroadband 3d Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Aytekin Ozdemir, J. Todd Hastings Jan 2021

An Ultrabroadband 3d Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Aytekin Ozdemir, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

We design and fabricate ultra-broadband achromatic metalenses operating from the visible into the short-wave infrared, 450–1700 nm, with diffraction-limited performance. A hybrid 3D architecture, which combines nanoholes with a phase plate, allows realization in low refractive index materials. As a result, two-photon lithography can be used for prototyping while molding can be used for mass production. Experimentally, a 0.27 numerical aperture (NA) metalens exhibits 60% average focusing efficiency and 6% maximum focal length error over the entire bandwidth. In addition, a 200 μm diameter, 0.04 NA metalens was used to demonstrate achromatic imaging over the same broad spectral range. These …


Experimental And Design Effort To Understand A Wider Sense Of Memory Application, Nicholas Zogbi Jan 2021

Experimental And Design Effort To Understand A Wider Sense Of Memory Application, Nicholas Zogbi

Discovery Undergraduate Interdisciplinary Research Internship

Magnetic Random-Access Memory (mRAM) is a more efficient, smaller, and less power-hungry memory device that can be implemented into computers. Using Magnetic Tunnel Junctions (MTJ) we store memory in devices that are far less complex than other types of memory with just the use of currents and magnetic fields changing the data.

In collaboration with the System-on-Chip Extension Technologies (SoCET) and Computing Advances by Probabilistic Spin Logic (CAPSL) groups, we have been working on using the characteristics of MTJs to characterize available commercial mRAM devices so we can have a better understanding of the thresholds of the MTJs. The SoCET …


Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali Jan 2021

Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali

Electrical & Computer Engineering Faculty Publications

At or near atmospheric pressure, most transient discharges, particularly in molecular gases or gas mixture containing molecular gases, result in a space charge dominated transport called a streamer discharge. The excited species generation in such discharges forms the basis for plasma chemistry in most technological applications. In this paper, we simulate the propagation of streamers in atmospheric pressure N2 to understand the energy partitioning in the formation of various excited species and compare the results to a uniform Townsend discharge. The model is fully two-dimensional with azimuthal symmetry. The results show a significantly larger fraction of the energy goes …


Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir Jan 2021

Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir

Publications and Research

There is growing interest in using strongly coupled organic microcavities to tune molecular dynamics, including the electronic and vibrational properties of molecules. However, very little attention has been paid to the utility of cavity polaritons as sensors for out-of-equilibrium phenomena, including thermal excitations. Here, we demonstrate that non-resonant infrared excitation of an organic microcavity system induces a transient response in the visible spectral range near the cavity polariton resonances. We show how these optical responses can be understood in terms of ultrafast heating of electrons in the metal cavity mirror, which modifies the effective refractive index and subsequently the strong …


Inventions Of Scientists, Engineers And Specialists From Different Countries In The Area Of Nanotechnologies. Part V, Leonid A. Ivanov, Li D. Xu, Konstantin E. Razumeev, Valentina M. Feoktistova, Petr S. Prokopiev Jan 2021

Inventions Of Scientists, Engineers And Specialists From Different Countries In The Area Of Nanotechnologies. Part V, Leonid A. Ivanov, Li D. Xu, Konstantin E. Razumeev, Valentina M. Feoktistova, Petr S. Prokopiev

Information Technology & Decision Sciences Faculty Publications

Introduction. Advanced technologies impress people's imagination demonstrating the latest achievements (materials, methods, systems, technologies, devices etc.) that dramatically change the world. This, first of all, concerns nanotechnological inventions designed by scientists, engineers and specialists from different countries. Main part. The article provides an abstract overview of inventions of scientists, engineers and specialists from different countries: Russia, USA, China, Belarus, Italy. The results of the creative activity of scientists, engineers and specialists, including inventions in the field of nanotechnology and nanomaterials allow, when introduced to industry, achieving a significant effect in construction, housing and communal services, and related sectors of the …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete Nov 2020

Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete

FIU Electronic Theses and Dissertations

MagnetoElectric Nanoparticles (MENPs) are known to be a powerful tool for a broad range of applications spanning from medicine to energy-efficient electronics. MENPs allow to couple intrinsic electric fields in the nervous system with externally controlled magnetic fields. This thesis exploited MENPs to achieve contactless brain-machine interface (BMIs). Special electromagnetic devices were engineered for controlling the MENPs’ magnetoelectric effect to enable stimulation and recording. The most important engineering breakthroughs of the study are summarized below.

(I) Metastable Physics to Localize Nanoparticles: One of the main challenges is to localize the nanoparticles at any selected site(s) in the brain. The fundamental …


Nonlinear Nanophotonic Devices In The Ultraviolet To Visible Wavelength Range, Jinghan He, Hong Chen, Jin Hu, Jingan Zhou, Yingmu Zhang, Andre Kovach, Constantine Sideris, Mark C. Harrison, Yuji Zhao, Andrea M. Armani Jul 2020

Nonlinear Nanophotonic Devices In The Ultraviolet To Visible Wavelength Range, Jinghan He, Hong Chen, Jin Hu, Jingan Zhou, Yingmu Zhang, Andre Kovach, Constantine Sideris, Mark C. Harrison, Yuji Zhao, Andrea M. Armani

Engineering Faculty Articles and Research

Although the first lasers invented operated in the visible, the first on-chip devices were optimized for near-infrared (IR) performance driven by demand in telecommunications. However, as the applications of integrated photonics has broadened, the wavelength demand has as well, and we are now returning to the visible (Vis) and pushing into the ultraviolet (UV). This shift has required innovations in device design and in materials as well as leveraging nonlinear behavior to reach these wavelengths. This review discusses the key nonlinear phenomena that can be used as well as presents several emerging material systems and devices that have reached the …


In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor For Dissolved Oxygen, Nader Shehata, Ishac Kandas, Effat Samir Feb 2020

In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor For Dissolved Oxygen, Nader Shehata, Ishac Kandas, Effat Samir

Electrical & Computer Engineering Faculty Publications

Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to DO …


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Enhanced Crystallinity Of Triple-Cation Perovskite Film Via Doping Nh4Scn, Ziji Liu, Detao Liu, Hao Chen, Long Ji, Hualin Zheng, Yiding Gu, Feng Wang, Zhi Chen, Shibin Li Sep 2019

Enhanced Crystallinity Of Triple-Cation Perovskite Film Via Doping Nh4Scn, Ziji Liu, Detao Liu, Hao Chen, Long Ji, Hualin Zheng, Yiding Gu, Feng Wang, Zhi Chen, Shibin Li

Electrical and Computer Engineering Faculty Publications

The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH4SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic …


Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury Jul 2019

Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury

FIU Electronic Theses and Dissertations

Wearable biosensing has the tremendous advantage of providing point-of-care diagnosis and convenient therapy. In this research, methods to stabilize the electrochemical sensing response from detection of target biomolecules, Uric Acid (UA) and Xanthine, closely linked to wound healing, have been investigated. Different kinds of materials have been explored to address such detection from a wearable, healing platform. Electrochemical sensing modalities have been implemented in the detection of purine metabolites, UA and Xanthine, in the physiologically relevant ranges of the respective biomarkers. A correlation can be drawn between the concentrations of these bio-analytes and wound severity, thus offering probable quantitative insights …


Femtosecond Photon-Mediated Plasma Enhances Photosynthesis Of Plasmonic Nanostructures And Their Sers Applications, Peng Ran, Lan Jiang, Xin Li, Bo Li, Pei Zuo, Yongfeng Lu Jan 2019

Femtosecond Photon-Mediated Plasma Enhances Photosynthesis Of Plasmonic Nanostructures And Their Sers Applications, Peng Ran, Lan Jiang, Xin Li, Bo Li, Pei Zuo, Yongfeng Lu

Department of Electrical and Computer Engineering: Faculty Publications

Laser ablation in liquid has proven to be a universal and green method to synthesize nanocrystals and fabricate functional nanostructures. This study demonstrates the superiority of femtosecond laser-mediated plasma in enhancing photoredox of metal cations for controllable fabrication of plasmonic nanostructures in liquid. Through employing upstream high energetic plasma during laser-induced microexplosions, single/three-electron photoreduction of metallic cations can readily occur without chemical reductants or capping agents. Experimental evidences demonstrate that this process exhibits higher photon utilization efficiency in yield of colloidal metal nanoparticles than direct irradiation of metallic precursors. Photogenerated hydrated electrons derived from strong ionization of silicon and water …