Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 328

Full-Text Articles in Nanoscience and Nanotechnology

Piezo-Tribo Dual Effect Hybrid Nanogenerators For Health Monitoring, Sk Md Ali Zaker Shawon, Andrew Xu Sun, Valeria Suarez Vega, Brishty Deb Chowdhury, Phong Tran, Zaida D. Carballo, Jim Aica Tolentino, Jianzhi Li, Muhammad Sufian Rafaqut, Serena Danti, Mohammed Jasim Uddin Apr 2021

Piezo-Tribo Dual Effect Hybrid Nanogenerators For Health Monitoring, Sk Md Ali Zaker Shawon, Andrew Xu Sun, Valeria Suarez Vega, Brishty Deb Chowdhury, Phong Tran, Zaida D. Carballo, Jim Aica Tolentino, Jianzhi Li, Muhammad Sufian Rafaqut, Serena Danti, Mohammed Jasim Uddin

Electrical and Computer Engineering Faculty Publications and Presentations

Over the years, nanogenerators for health monitoring have become more and more attractive as they provide a cost-effective and continuous way to successfully measure vital signs, physiological status, and environmental changes in/around a person. Using such sensors can positively affect the way healthcare workers diagnose and prevent life-threatening conditions. Recently, the dual piezo-tribological effect of hybrid nanogenerators (HBNGs) have become a subject of investigation, as they can provide a substantial amount of data, which is significant for healthcare. However, real-life exploitation of these HBNGs in health monitoring is still marginal. This review covers piezo-tribo dual-effect HBNGs that are used ...


An Ultrabroadband 3d Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Aytekin Ozdemir, J. Todd Hastings Jan 2021

An Ultrabroadband 3d Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Aytekin Ozdemir, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

We design and fabricate ultra-broadband achromatic metalenses operating from the visible into the short-wave infrared, 450–1700 nm, with diffraction-limited performance. A hybrid 3D architecture, which combines nanoholes with a phase plate, allows realization in low refractive index materials. As a result, two-photon lithography can be used for prototyping while molding can be used for mass production. Experimentally, a 0.27 numerical aperture (NA) metalens exhibits 60% average focusing efficiency and 6% maximum focal length error over the entire bandwidth. In addition, a 200 μm diameter, 0.04 NA metalens was used to demonstrate achromatic imaging over the same broad ...


Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali Jan 2021

Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali

Electrical & Computer Engineering Faculty Publications

At or near atmospheric pressure, most transient discharges, particularly in molecular gases or gas mixture containing molecular gases, result in a space charge dominated transport called a streamer discharge. The excited species generation in such discharges forms the basis for plasma chemistry in most technological applications. In this paper, we simulate the propagation of streamers in atmospheric pressure N2 to understand the energy partitioning in the formation of various excited species and compare the results to a uniform Townsend discharge. The model is fully two-dimensional with azimuthal symmetry. The results show a significantly larger fraction of the energy goes ...


Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention ...


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection ...


3d Interdigitated Vertically Aligned Carbon Nanotube Electrodes For Electrochemical Impedimetric Biosensing, Benjamin J. Brownlee, Jonathan C. Claussen, Brian D. Iverson Sep 2020

3d Interdigitated Vertically Aligned Carbon Nanotube Electrodes For Electrochemical Impedimetric Biosensing, Benjamin J. Brownlee, Jonathan C. Claussen, Brian D. Iverson

Mechanical Engineering Publications

Advances in nanomaterials, combined with electrochemical impedance spectroscopy (EIS), have allowed electrochemical biosensors to have high sensitivity while remaining label-free, enabling the potential for portable diagnosis at the point-of-care. We report porous, 3D vertically aligned carbon nanotube (VACNT) electrodes with underlying chromium electrical leads for impedance-based biosensing. The electrodes are characterized by electrode height (5, 25, and 80 μm), gap width (15 and 25 μm), and geometry (interdigitated and serpentine) using scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The protein streptavidin is functionalized onto VACNT electrodes for detection of biotin, as confirmed by fluorescence microscopy. EIS is ...


Nonlinear Nanophotonic Devices In The Ultraviolet To Visible Wavelength Range, Jinghan He, Hong Chen, Jin Hu, Jingan Zhou, Yingmu Zhang, Andre Kovach, Constantine Sideris, Mark C. Harrison, Yuji Zhao, Andrea M. Armani Jul 2020

Nonlinear Nanophotonic Devices In The Ultraviolet To Visible Wavelength Range, Jinghan He, Hong Chen, Jin Hu, Jingan Zhou, Yingmu Zhang, Andre Kovach, Constantine Sideris, Mark C. Harrison, Yuji Zhao, Andrea M. Armani

Engineering Faculty Articles and Research

Although the first lasers invented operated in the visible, the first on-chip devices were optimized for near-infrared (IR) performance driven by demand in telecommunications. However, as the applications of integrated photonics has broadened, the wavelength demand has as well, and we are now returning to the visible (Vis) and pushing into the ultraviolet (UV). This shift has required innovations in device design and in materials as well as leveraging nonlinear behavior to reach these wavelengths. This review discusses the key nonlinear phenomena that can be used as well as presents several emerging material systems and devices that have reached the ...


Direct Observations Of Field-Intensity-Dependent Dielectric Breakdown Mechanisms In Tio2 Single Nanocrystals, Xinchun Tian, Geoff Lee Brennecka, Xiaoli Tan Jun 2020

Direct Observations Of Field-Intensity-Dependent Dielectric Breakdown Mechanisms In Tio2 Single Nanocrystals, Xinchun Tian, Geoff Lee Brennecka, Xiaoli Tan

Materials Science and Engineering Publications

One of the main challenges for next-generation electric power systems and electronics is to avoid premature dielectric breakdown in insulators and capacitors and to ensure reliable operations at higher electric fields and higher efficiencies. However, dielectric breakdown is a complex phenomenon and often involves many different processes simultaneously. Here we show distinctly different defect-related and intrinsic breakdown processes by studying individual, single-crystalline TiO2 nanoparticles using in situ transmission electron microscopy (TEM). As the applied electric field intensity rises, rutile-to-anatase phase transition, local amorphization/melting, and ablation are identified as the corresponding breakdown processes, the field intensity thresholds of which are ...


Highly Transmissive Scalable Colored Coatings For Architectural Photovoltaic Panels, Akbar Ali Syed Apr 2020

Highly Transmissive Scalable Colored Coatings For Architectural Photovoltaic Panels, Akbar Ali Syed

Electrical & Computer Engineering Theses & Disssertations

Highly transmissive coatings were developed by fabricating thin films using SiO2 and SiO2/TiO2 core/shell nanoparticles on glass substrates and on the photovoltaic cell glass covers. This coating is to maintain an attractive color appearance of the exterior surface for architecturally integrated photovoltaics and can be coated on fabricated photovoltaic panels. The color and optical properties of the nanoparticle coating was investigated for different nanoparticle diameters of 200-400 nm for SiO2 nanoparticles and core/shell nanoparticles having SiO2/TiO2 structure with 300 ± 11 nm diameter, and SiO2/TiO2/SiO2 structure ...


Site-Specific Sodiation Mechanisms Of Selenium In Microporous Carbon Host, Frédéric A. Perras, Sooyeon Hwang, Yixian Wang, Ethan C. Self, Pengcheng Liu, Rana Biswas, Sudhan Nagarajan, Viet Hung Pham, Yixin Xu, J. Anibal Boscoboinik, Dong Su, Jagjit Nanda, Marek Pruski, David Mitlin Feb 2020

Site-Specific Sodiation Mechanisms Of Selenium In Microporous Carbon Host, Frédéric A. Perras, Sooyeon Hwang, Yixian Wang, Ethan C. Self, Pengcheng Liu, Rana Biswas, Sudhan Nagarajan, Viet Hung Pham, Yixin Xu, J. Anibal Boscoboinik, Dong Su, Jagjit Nanda, Marek Pruski, David Mitlin

Ames Laboratory Accepted Manuscripts

We combined advanced TEM (HRTEM, HAADF, EELS) with solid-state (SS)MAS NMR and electroanalytical techniques (GITT, etc.) to understand the site-specific sodiation of selenium (Se) encapsulated in a nanoporous carbon host. The architecture employed is representative of a wide number of electrochemically stable and rate-capable Se-based sodium metal battery (SMB) cathodes. SSNMR demonstrates that during the first sodiation, the Se chains are progressively cut to form an amorphous mixture of polyselenides of varying lengths, with no evidence for discrete phase transitions during sodiation. It also shows that Se nearest the carbon pore surface is sodiated first, leading to the formation ...


In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor For Dissolved Oxygen, Nader Shehata, Ishac Kandas, Effat Samir Feb 2020

In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor For Dissolved Oxygen, Nader Shehata, Ishac Kandas, Effat Samir

Electrical & Computer Engineering Faculty Publications

Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to ...


Fabrication, Development, And Characterization Of Hipco Swcnt - Alginate Hydrogel Composites For Cellular Product Applications, Fabian Armando Alvarez-Primo Jan 2020

Fabrication, Development, And Characterization Of Hipco Swcnt - Alginate Hydrogel Composites For Cellular Product Applications, Fabian Armando Alvarez-Primo

Open Access Theses & Dissertations

In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and their dose-dependent correlation to cell viability, all of which have an impact on the resultant compositeâ??s efficiency and effectiveness towards biomedical applications. To promote their homogenous dispersion by preventing agglomeration of the SWCNT, at first, we used three different surfactants-sodium dodecyl sulfate (SDS-anionic), cetyltrimethylammonium bromide (CTAB-cationic), and Pluronic F108 (nonionic). After experimentation and corroboration through ...


Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya Jan 2020

Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya

Theses and Dissertations

To meet the ever-growing demand of faster and smaller computers, increasing number of transistors are needed in the same chip area. Unfortunately, Silicon based transistors have almost reached their miniaturization limits mainly due to excessive heat generation. Nanomagnetic devices are one of the most promising alternatives of CMOS. In nanomagnetic devices, electron spin, instead of charge, is the information carrier. Hence, these devices are non-volatile: information can be stored in these devices without needing any external power which could enable computing architectures beyond traditional von-Neumann computing. Additionally, these devices are also expected to be more energy efficient than CMOS devices ...


Improved Contacts And Device Performance In Mos2 Transistors Using 2d Semiconductor Interlayers, Kraig Andrews Jan 2020

Improved Contacts And Device Performance In Mos2 Transistors Using 2d Semiconductor Interlayers, Kraig Andrews

Wayne State University Dissertations

The rapid growth of modern electronics industry over the past half-century has been sustained by the continued miniaturization of silicon-based electronics. However, as fundamental limits approach, there is a need to search for viable alternative materials for next-generation electronics in the post-silicon era. Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDs) have attracted much attention due to their atomic thickness, absence of dangling bonds and moderately high carrier mobility. However, achieving low-resistance contacts has been major impediment in developing high-performance field-effect transistors (FETs) based on 2D semiconductors. A substantial Schottky barrier (SB) is often present at the metal/2D-semicondcutor ...


Surface And Structure Engineering For Next Generation Lithium Metal Batteries, Ke Chen Jan 2020

Surface And Structure Engineering For Next Generation Lithium Metal Batteries, Ke Chen

Electronic Theses and Dissertations

Lithium (Li) metal has been considered as one of the most promising anode materials to replace conventional graphite for Li-ion battery due to its high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.04 V vs standard hydrogen electrode). However, it still faces some problems such as unstable solid electrolyte interphase (SEI), uncontrolled Li dendrites growth, and infinite volume change during battery charging/discharging. To develop a stable and low-cost Li metal anode for next-generation Li metal battery, in this dissertation, we have made efforts to understand and solve these problems in two aspects, by introducing an artificial ...


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs ...


Optical Angular Scatterometry: In-Line Approach For Roll-2-Roll And Nano-Imprint Fabrication Systems, Juan Jose Faria-Briceno Nov 2019

Optical Angular Scatterometry: In-Line Approach For Roll-2-Roll And Nano-Imprint Fabrication Systems, Juan Jose Faria-Briceno

Electrical and Computer Engineering ETDs

As critical dimensions continue to shrink and structures become more complex, metrology processes are challenging to implement during in-line nanomanufacturing. Non-destructive, non-contact, and high-speed conditions are required to achieve proper metrology processes during in-line manufacturing. Optical scatterometry is a nanoscale metrology tool widely used in integrated circuit manufacturing for characterization and quality control. However, most applications of optical scatterometry operate off-line. A high-speed, in-line, non-contact, non-destructive scatterometry angular system has been demonstrated in this work to scan pattern surfaces during real-time nano-fabrication.

Our system has demonstrated scanning capabilities using flat, 1D and 2D complex structures. The flat surface samples consist ...


Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh Oct 2019

Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh

Doctoral Dissertations

Society has benefited from the technological revolution and the tremendous growth in computing powered by Moore's law. However, we are fast approaching the ultimate physical limits in terms of both device sizes and the associated energy dissipation. It is important to characterize these limits in a physically grounded and implementation-agnostic manner, in order to capture the fundamental energy dissipation costs associated with performing computing operations with classical information in nano-scale quantum systems. It is also necessary to identify and understand the effect of quantum in-distinguishability, noise, and device variability on these dissipation limits. Identifying these parameters is crucial to ...


Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim Oct 2019

Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim

Tool Data

S1805 positive photoresist has been deposited on single crystalline Si wafers using a Suss MicroTec Alta Spray. The influence of flow rate, nozzle speed, pitch and number of passes on the thickness of the photoresist was studied. Results show that the thickness of S1805 is linearly proportional to the flow rate and number of passes, and inversely proportional to the nozzle speed and pitch.


Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki Oct 2019

Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki

Electrical & Computer Engineering Theses & Disssertations

Carbon ions generated by ablation of a carbon target using an Nd:YAG laser pulse (wavelength λ = 1064 nm, pulse width τ = 7 ns, and laser fluence of 10-110 J/cm2) are characterized. Time-of-flight analyzer, a three-mesh retarding field analyzer, and an electrostatic ion energy analyzer are used to study the charge and energy of carbon ions generated by laser ablation. The dependencies of the ion signal on the laser fluence, laser focal point position relative to target surface, and the acceleration voltage are described. Up to C4+ are observed. When no acceleration voltage is applied between the ...


A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence Oct 2019

A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence

Doctoral Dissertations

The field of microelectronics plays an important role in many areas of engineering and science, being ubiquitous in aerospace, industrial manufacturing, biotechnology, and many other fields. Today, many micro- and nanoscale electronic devices are integrated into one package. e capacity to simulate new devices accurately is critical to the engineering design process, as device engineers use simulations to predict performance characteristics and identify potential issues before fabrication. A problem of particular interest is the simulation of devices which exhibit exotic behaviors due to non-equilibrium thermodynamics and thermal effects such as self-heating. Frequently, it is desirable to predict the level of ...


Enhanced Crystallinity Of Triple-Cation Perovskite Film Via Doping Nh4Scn, Ziji Liu, Detao Liu, Hao Chen, Long Ji, Hualin Zheng, Yiding Gu, Feng Wang, Zhi Chen, Shibin Li Sep 2019

Enhanced Crystallinity Of Triple-Cation Perovskite Film Via Doping Nh4Scn, Ziji Liu, Detao Liu, Hao Chen, Long Ji, Hualin Zheng, Yiding Gu, Feng Wang, Zhi Chen, Shibin Li

Electrical and Computer Engineering Faculty Publications

The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH4SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other ...


Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury Jul 2019

Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury

FIU Electronic Theses and Dissertations

Wearable biosensing has the tremendous advantage of providing point-of-care diagnosis and convenient therapy. In this research, methods to stabilize the electrochemical sensing response from detection of target biomolecules, Uric Acid (UA) and Xanthine, closely linked to wound healing, have been investigated. Different kinds of materials have been explored to address such detection from a wearable, healing platform. Electrochemical sensing modalities have been implemented in the detection of purine metabolites, UA and Xanthine, in the physiologically relevant ranges of the respective biomarkers. A correlation can be drawn between the concentrations of these bio-analytes and wound severity, thus offering probable quantitative insights ...


Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran May 2019

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran

Master's Theses

Micro- and nano-scale surface modifications have been a subject of great interest for enhancing the pool boiling heat transfer performance of immersion cooling systems due to their ability to augment surface area, improve wickability, and increase nucleation site density. However, many of the surface modification technologies that have been previously demonstrated show a lack of evidence concerning scalability for use at an industrial level. In this work, the pool boiling heat transfer performance of nanoporous anodic aluminum oxide (AAO) films, copper oxide (CuO) nanostructure coatings, and 1D roll-molded microfin arrays has been studied. Each of these technologies possess scalability in ...


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties ...


Enhancement Of Microwave Absorption Bandwidth Of Polymer Blend Using Ferromagnetic Gadolinium Silicide Nanoparticles, Pritom J. Bora, Shalabh Gupta, Vitalij K. Pecharsky, K. J. Vinoy, Praveen C. Ramamurthy, Ravi L. Hadimani Apr 2019

Enhancement Of Microwave Absorption Bandwidth Of Polymer Blend Using Ferromagnetic Gadolinium Silicide Nanoparticles, Pritom J. Bora, Shalabh Gupta, Vitalij K. Pecharsky, K. J. Vinoy, Praveen C. Ramamurthy, Ravi L. Hadimani

Ames Laboratory Accepted Manuscripts

Ferromagnetic gadolinium silicide (Gd5Si4) nanoparticles significantly enhance the microwave absorption bandwidth of a polymer blend (PVB-PEDOT:PSS). These materials are critically needed for various military and civilian applications such as X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz) absorption. A single 1.2 mm thick layer of PVB-PEDOT:PSS-Gd5Si4 (PPGS) nanocomposite film shows the most promising bandwidth (8.2–18 GHz) with a minimum reflection loss of -14 dB. Mechanistically, dielectric loss (tan δe ≈2.4) and magnetic loss (tan δm ≈1.1) contributes more efficiently, and standard microwave simulation confirms the stored energy ...


Vision Beyond Optics: Standardization, Evaluation And Innovation For Fluorescence Microscopy In Life Sciences, Maximiliaan Huisman Apr 2019

Vision Beyond Optics: Standardization, Evaluation And Innovation For Fluorescence Microscopy In Life Sciences, Maximiliaan Huisman

GSBS Dissertations and Theses

Fluorescence microscopy is an essential tool in biomedical sciences that allows specific molecules to be visualized in the complex and crowded environment of cells. The continuous introduction of new imaging techniques makes microscopes more powerful and versatile, but there is more than meets the eye. In addition to develop- ing new methods, we can work towards getting the most out of existing data and technologies. By harnessing unused potential, this work aims to increase the richness, reliability, and power of fluorescence microscopy data in three key ways: through standardization, evaluation and innovation.

A universal standard makes it easier to assess ...


Gd5si4-Pvdf Nanocomposite Films And Their Potential For Triboelectric Energy Harvesting Applications, S. M. Harstad, P. Zhao, N. Soin, A. A. El-Gendy, Shalabh Gupta, Vitalij K. Pecharsky, J. Luo, Ravi L. Hadimani Mar 2019

Gd5si4-Pvdf Nanocomposite Films And Their Potential For Triboelectric Energy Harvesting Applications, S. M. Harstad, P. Zhao, N. Soin, A. A. El-Gendy, Shalabh Gupta, Vitalij K. Pecharsky, J. Luo, Ravi L. Hadimani

Ames Laboratory Accepted Manuscripts

The triboelectric energy generators prepared using the combination of self-polarized, high beta-phase nanocomposite films of Gd5Si4-PVDF and polyamide-6 (PA-6) films have generated significantly higher voltage of 425 V, short-circuit current density of 30 mA/m(2) and a charge density of similar to 116.7 C/m(2) as compared to corresponding values of 300 V, 30 mA/m(2) and 94.7 mu C/m(2), respectively for the pristine PVDF-(PA-6) combination. The magnetic measurements of the Gd5Si4-PVDF films display a ferromagnetic behavior as compared to diamagnetic nature of pristine PVDF. The presence of magnetic nanoparticles in the ...


Progress Report I: Fabrication Of Nanopores In Silicon Nitride Membranes Using Self-Assembly Of Ps-B-Pmma, Unnati Joshi, Vishal Venkatesh, Hiromichi Yamamoto Mar 2019

Progress Report I: Fabrication Of Nanopores In Silicon Nitride Membranes Using Self-Assembly Of Ps-B-Pmma, Unnati Joshi, Vishal Venkatesh, Hiromichi Yamamoto

Protocols and Reports

This progress report describes fabrication of silicon nitride membranes from Si wafers using cleanroom techniques, and of nanopore preparation via a self-assembled PS-b-PMMA film. A 36.9 µm thick membrane is successfully prepared by KOH wet etching. The membrane is a layered structure of 36.8 µm thick Si and 116 nm thick silicon nitride. It is also exhibited that in the 47 nm thick PS-b-PMMA film, the nanopore structure is observed in the vicinity of a dust particle, but most of the area indicates lamellar domain structure. The thickness of PS-b-PMMA film will ...