Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang May 2019

Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang

Chemistry Faculty Publications

Rigid three-dimensional (3D) polycyclic aromatic hydrocarbons (PAHs), in particular 3D nanographenes, have garnered interest due to their potential use in semiconductor applications and as models to study through-bond and through-space electronic interactions. Herein we report the development of a novel 3D-symmetric rylene imide building block, triperyleno[3,3,3]propellane triimides (6), that possesses three perylene monoimide subunits fused on a propellane. This building block shows several promising characteristics, including high solubility, large π-surfaces, electron-accepting capabilities, and a variety of reactive sites. Further, the building block is compatible with different reactions to readily yield quasi-D3h symmetric nanostructures (9, …


The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock Jan 2019

The Fabrication And Characterization Of Metal Oxide Nanoparticles Employed In Environmental Toxicity And Polymeric Nanocomposite Applications, Matthew Logan Hancock

Theses and Dissertations--Chemical and Materials Engineering

Ceria (cerium oxide) nanomaterials, or nanoceria, have commercial catalysis and energy storage applications. The cerium atoms on the surface of nanoceria can store or release oxygen, cycling between Ce3+ and Ce4+, and can therefore act as a therapeutic to relieve oxidative stress within living systems. Nanoceria dissolution is present in acidic environments in vivo. In order to accurately define the fate of nanoceria in vivo, nanoceria dissolution or stabilization is observed in vitro using acidic aqueous environments.

Nanoceria stabilization is a known problem even during its synthesis; in fact, a carboxylic acid, citric acid, is …


Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra Jan 2017

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra

Theses and Dissertations--Chemical and Materials Engineering

Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes.

Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these …


Synthesis Of Titania Thin Films With Controlled Mesopore Orientation: Nanostructure For Energy Conversion And Storage, Suraj R. Nagpure Jan 2016

Synthesis Of Titania Thin Films With Controlled Mesopore Orientation: Nanostructure For Energy Conversion And Storage, Suraj R. Nagpure

Theses and Dissertations--Chemical and Materials Engineering

This dissertation addresses the synthesis mechanism of mesoporous titania thin films with 2D Hexagonal Close Packed (HCP) cylindrical nanopores by an evaporation-induced self-assembly (EISA) method with Pluronic surfactants P123 and F127 as structure directing agents, and their applications in photovoltaics and lithium ion batteries. To provide orthogonal alignment of the pores, surface modification of substrates with crosslinked surfactant has been used to provide a chemically neutral surface. GISAXS studies show not only that aging at 4°C facilitates ordered mesostructure development, but also that aging at this temperature helps to provide orthogonal orientation of the cylindrical micelles which assemble into an …


Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome Jan 2014

Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome

Theses and Dissertations--Chemistry

Due to their relative chemical stability and ubiquity in the environment, chlorinated organic contaminants such as polychlorinated biphenyls (PCBs) pose significant health risks and enduring remediation challenges. Engineered nanoparticles (NPs) provide a novel platform for sensing/remediation of these toxicants, in addition to the growing use of NPs in many industrial and biomedical applications, but there remains concern for their potential long-term health effects. Research highlighted herein also represents a transdisciplinary approach to address human health challenges associated with exposure to PCBs and NPs. The objectives of this dissertation research are two-fold, 1) to develop effective methods for capture/sensing and remediation …


Influence Of Surface Modification On Properties And Applications Of Complex Engineered Nanoparticles, Binghui Wang Jan 2013

Influence Of Surface Modification On Properties And Applications Of Complex Engineered Nanoparticles, Binghui Wang

Theses and Dissertations--Chemical and Materials Engineering

Complex engineered nanoparticles (CENPs) are being used on various applications. Their properties are different from those of neat nanoparticles. The dissertation explores these differences from four aspects: 1) Modify carbon nanomaterials’ inert surfaces and investigate the effect on thermal and rheological behavior of their dispersions; 2) Generate self-assembly bi-layer structure of oxide nanoparticles via surface modification; 3) Study interaction between lysozyme and different surface-charged ceria nanoparticles; 4) Investigate the biodistribution and transformations of CENPs in biological media.

An environment-friendly surface modification was developed to modify surfaces of carbon nanomaterials for increasing their affinity to non-polar fluid. It can offset formation …