Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Nanoscience and Nanotechnology

Electrodeposition Of Nickel Nanowires And Nanotubes Using Various Templates, Asli Ertan, Surendra N. Tewari, Orhan Talu Dec 2008

Electrodeposition Of Nickel Nanowires And Nanotubes Using Various Templates, Asli Ertan, Surendra N. Tewari, Orhan Talu

Chemical & Biomedical Engineering Faculty Publications

Nickel nanotubes and nanowires are grown by galvanostatic electrodeposition in the pores of 1000, 100, and 15 nm polycarbonate as well as in anodised alumina membranes at a current density of 10 mA cm-2. The effects of pore size, porosity, electrodeposition time, effective current density, and pore aspect ratio are investigated. Nickel nanotube structures are obtained with 1000 nm pore size polycarbonate membrane without any prior treatment method. At the early stages of electrodeposition hollow nickel nanotubes are produced and nanotubes turn into nanowires at longer depositon times. As effective current density accounting for the membrane porosity decreases, the axial …


An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das Mar 2008

An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das

Electrical & Computer Engineering Faculty Research

Nanoparticles of metals and semiconductors are promising for the implementation of a variety of photonic and electronic devices with superior performances and new functionalities. However, their successful implementation has been limited due to the lack of appropriate fabrication processes that are suitable for volume manufacturing. The current techniques for the fabrication of nanoparticles either are solution based, thus requiring complex surface passivation, or have severe constraints over the choice of particle size and material. We have developed an ultrahigh vacuum system for the implementation of a complex nanosystem that is flexible and compatible with the silicon integrated circuit process, thus …


Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2008

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description …


Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Mikhail Khenner Jan 2008

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Mikhail Khenner

Mathematics Faculty Publications

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description …


Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner Jan 2008

Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

Mathematics Faculty Publications

The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a …


Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2008

Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description …


Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner Jan 2008

Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner

Mathematics Faculty Publications

The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a …


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2008

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to …


Nano Quasicrystal Formation And Local Atomic Structure In Zr––Pd And Zr––Pt Binary Metallic Glasses, Junji Saida, Takashi Sanada, Shigeo Sato, Muneyuki Imafuku, Chunfei Li, Akihisa Inoue Jan 2008

Nano Quasicrystal Formation And Local Atomic Structure In Zr––Pd And Zr––Pt Binary Metallic Glasses, Junji Saida, Takashi Sanada, Shigeo Sato, Muneyuki Imafuku, Chunfei Li, Akihisa Inoue

Center for Electron Microscopy and Nanofabrication Publications and Presentations

Formation of the nanoscale icosahedral quasicrystalline phase (I-phase) in the melt-spun Zr70Pd30 and Zr80Pt20 binary metallic glasses were reported. Local atomic structure in the glassy and quasicrystal (QC)-formed states were also analyzed by XRD and EXAFS measurements in order to investigate the formation mechanism of QC phase. The distorted icosahedral-like local structure can be identified around Zr atom in the Zr70Pd30 metallic glass. In the QC formation process, a change of local environment around Zr is detected, in which the approximately one Zr atom substitutes for one Pd atom. In contrast, …


A New Method Of Synthesizing Black Birnessite Nanoparticles: From Brown To Black Birnessite With Nanostructures, Shizhi Qian, Marcos A. Cheney, Pradip K. Bhowmik, Sang W. Joo, Wensheng Hou, Joseph M. Okoh Jan 2008

A New Method Of Synthesizing Black Birnessite Nanoparticles: From Brown To Black Birnessite With Nanostructures, Shizhi Qian, Marcos A. Cheney, Pradip K. Bhowmik, Sang W. Joo, Wensheng Hou, Joseph M. Okoh

Mechanical Engineering Faculty Research

A new method for preparing black birnessite nanoparticles is introduced. The initial synthesis process resembles the classical McKenzie method of preparing brown birnessite except for slower cooling and closing the system from the ambient air. Subsequent process, including wet-aging at 7◦C for 48 hours, overnight freezing, and lyophilization, is shown to convert the brown birnessite into black birnessite with complex nanomorphology with folded sheets and spirals. Characterization of the product is performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA), and N2 adsorption (BET) techniques. Wet-aging and lyophilization times are shown to …