Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons™
Open Access. Powered by Scholars. Published by Universities.®
- Institution
- Keyword
-
- Selected recent publications (5)
- Zeolite (2)
- Nanoparticles (2)
- AlPO-18 (2)
- Nanostructured materials (2)
-
- Wastewater treatment (2)
- Eutectic alloys (1)
- Ca2+-dependent contractility (1)
- Fibers (1)
- Contaminated Water (1)
- Glycine max L. (1)
- Electrospinning (1)
- Contraction kinetics (1)
- Advanced Oxidation Processes (1)
- Corrosion and anti-corrosives (1)
- Canavalia gladiata [Jacq.] DC (1)
- Catalytic oxidation (1)
- 2 - Phloem Transport & Forisomes (1)
- Green chemistry (1)
- Aluminum oxide (1)
- Contractile protein (1)
- Corrosion (1)
- Clays (1)
- Electrodeposition (1)
- Composites (1)
- Dielectric constant measurement for liquids (1)
- Film deposition (1)
- Fast synthesis (1)
- Crystallography (1)
- Chromium (1)
- Publication
- Publication Type
- File Type
Articles 1 - 20 of 20
Full-Text Articles in Nanoscience and Nanotechnology
Electrodeposition Of Nickel Nanowires And Nanotubes Using Various Templates, Asli Ertan, Surendra N. Tewari, Orhan Talu
Electrodeposition Of Nickel Nanowires And Nanotubes Using Various Templates, Asli Ertan, Surendra N. Tewari, Orhan Talu
Chemical & Biomedical Engineering Faculty Publications
Nickel nanotubes and nanowires are grown by galvanostatic electrodeposition in the pores of 1000, 100, and 15 nm polycarbonate as well as in anodised alumina membranes at a current density of 10 mA cm-2. The effects of pore size, porosity, electrodeposition time, effective current density, and pore aspect ratio are investigated. Nickel nanotube structures are obtained with 1000 nm pore size polycarbonate membrane without any prior treatment method. At the early stages of electrodeposition hollow nickel nanotubes are produced and nanotubes turn into nanowires at longer depositon times. As effective current density accounting for the membrane porosity decreases, the axial ...
Nanoporous Materials With Enhanced Hydrophilicity And High Water Capacity, Eng-Poh Ng, Svetlana Mintova
Nanoporous Materials With Enhanced Hydrophilicity And High Water Capacity, Eng-Poh Ng, Svetlana Mintova
Eng-Poh Ng
The main types of nanoporous adsorbents for water are identified and described with emphasis on the mechanism of adsorption, modification, improvement of the water sorption capacity, possible regeneration, and stabilization. Among the three main groups of water sorbents, i.e. inorganic materials (zeolites, clays, silica), carbon based materials and organic polymers, the first one is described in details. The significance of their porosity, chemical and structural features relative to the water adsorptive properties of each inorganic type materials is reviewed. Important features for silicates, zeolites, aluminophosphates, mesoporous materials and clays are described, which define the interactions between the water and ...
Dielectric Relaxation Behaviour Of Glycine In Acqueous Solution Medium In The Microwave Frequency Region, Ajaya Kumar Kavala
Dielectric Relaxation Behaviour Of Glycine In Acqueous Solution Medium In The Microwave Frequency Region, Ajaya Kumar Kavala
Mr Ajaya Kumar Kavala
No abstract provided.
Anisotropic Contraction In Forisomes: Simple Models Won't Fit, Winfried Peters, Michael Knoblauch, Stephen Warmann, William Pickard, Amy Shen
Anisotropic Contraction In Forisomes: Simple Models Won't Fit, Winfried Peters, Michael Knoblauch, Stephen Warmann, William Pickard, Amy Shen
Winfried S. Peters
An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das
An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das
Electrical and Computer Engineering Faculty Publications
Nanoparticles of metals and semiconductors are promising for the implementation of a variety of photonic and electronic devices with superior performances and new functionalities. However, their successful implementation has been limited due to the lack of appropriate fabrication processes that are suitable for volume manufacturing. The current techniques for the fabrication of nanoparticles either are solution based, thus requiring complex surface passivation, or have severe constraints over the choice of particle size and material. We have developed an ultrahigh vacuum system for the implementation of a complex nanosystem that is flexible and compatible with the silicon integrated circuit process, thus ...
Nanoclay Reinforced Fibers And Nonwovens, Raghavendra Hegde
Nanoclay Reinforced Fibers And Nonwovens, Raghavendra Hegde
Raghavendra R Hegde Dr
In this research, polypropylene fibers and nonwoven samples were produced with the commercial samples of nanoclay additives in semi-commercial processing machinery. Influence of two different types of nanoclay additives, at different add on levels on processing, structure and morphology of nonwovens is studied. The WAXD and DSC data showed some change in crystallinity and melting behavior indicating changes in the fiber morphology towards improved mechanical properties. Presence and extent of exfoliation of nanoclay in the polymer was verified using transmission electron microscopy (TEM). TEM image reveals intercalated and exfoliated morphology of nanocomposites. About 10 to 20 % increase in tensile strength ...
Charge Transfer Mechanisms In Electrospinning, Jonathan J. Stanger
Charge Transfer Mechanisms In Electrospinning, Jonathan J. Stanger
Jonathan J Stanger
Electrospinning is a method of producing nano structured material from a polymer solution or melt using high strength electric fields. It is a process that has yet to find extensive industrial application yet shows promise if obstacles such as low rate of production overcome perhaps by more complete theoretical modelling. This work examines the effects of adding an ionic salt to a solution of poly(vinyl alcohol) in water. The direct effect was an increase the charge density and electric current. It was found that an increase in charge density decreases the mass deposition rate and forms a thinner initial ...
Removal Of Organic Dyes From Industrial Wastewaters Using Uv/H2o2, Uv/H2o2/Fe (Ii), Uv/H2o2/Fe (Iii) Processes (Persian Paper), Mir Saeed Seyed Dorraji
Removal Of Organic Dyes From Industrial Wastewaters Using Uv/H2o2, Uv/H2o2/Fe (Ii), Uv/H2o2/Fe (Iii) Processes (Persian Paper), Mir Saeed Seyed Dorraji
Mir saeed Seyed Dorraji
UV/H2O2, UV/H2O2/Fe (II) and UV/H2O2/Fe (III) processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light) and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in ...
Supercritical Water Oxidation Process And Its Application In Treatment Of Industrial Wastewater (Persian Paper), N. Daneshvar, S. Aber, Mir Saeed Seyed Dorraji, M. Zarei, M. H. Rasoulifard
Supercritical Water Oxidation Process And Its Application In Treatment Of Industrial Wastewater (Persian Paper), N. Daneshvar, S. Aber, Mir Saeed Seyed Dorraji, M. Zarei, M. H. Rasoulifard
Mir saeed Seyed Dorraji
In the last two decades, supercritical water has become an interesting medium for chemistry. One of its most investigated applications is the oxidative treatment of aqueous wastes containing organic compound in the so-called “supercritical water oxidation”. In this technology, supercritical water acts as a non-polar solvent. Consequently, even non-polar organic compounds and gases like oxygen become completely miscible with the supercritical fluid. During the supercritical water oxidation (SCWO) process, the organic compounds react completely with oxidant –mostly oxygen- in a single phase reaction forming CO2 and H2O. The hetero-atoms present in the organic wastes are transformed into the mineral acids ...
Alpo-18 Seed Layers And Films By Secondary Growth, Lubomira Tosheva, Eng-Poh Ng, Svetlana Mintova, Manfred Holzl, Till H. Metzger, Aidan M. Doyle
Alpo-18 Seed Layers And Films By Secondary Growth, Lubomira Tosheva, Eng-Poh Ng, Svetlana Mintova, Manfred Holzl, Till H. Metzger, Aidan M. Doyle
Eng-Poh Ng
AlPO-18 layers were prepared on Si wafers via spin-coating or the Langmuir−Blodgett (LB) method using nanosized crystals. Multilayers were deposited by spin-coating, whereas the seeds assembled by the LB technique were monolayers. The seeded layers were not stable upon secondary growth under microwave radiation, and no films were formed on the supports. Dense AlPO-18 films could be obtained by secondary growth after stabilization of the seed layers by adding prehydrolyzed tetraethylorthosilicate (TEOS) to the colloidal AlPO-18 suspension prior to support seeding. The stabilized seed layers and the grown AlPO-18 films were stable. The structure and the morphology of the ...
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Mathematics Faculty Publications
The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...
Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das
Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das
Transmutation Sciences Materials (TRP)
Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.
In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to ...
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Mikhail Khenner
The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...
Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Mikhail Khenner
Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Morphologies And Kinetics Of A Dewetting Ultrathin Solid Film, Mikhail Khenner
Mathematics Faculty Publications
The surface evolution model based on geometric partial differential equation is used to numerically study the kinetics of dewetting and dynamic morphologies for the localized pinhole defect in the surface of the ultrathin solid film with the strongly anisotropic surface energy. Depending on parameters such as the initial depth and width of the pinole, the strength of the attractive substrate potential and the strength of the surface energy anisotropy, the pinhole may either extend to the substrate and thus rupture the film, or evolve to the quasiequilibrium shape while the rest of the film surface undergoes phase separation into a ...
Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Mathematics Faculty Publications
Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...
Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Mikhail Khenner
Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Mikhail Khenner
Mathematics Faculty Publications
Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...
Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Enhanced Stability Of A Dewetting Thin Liquid Film In A Single-Frequency Vibration Field, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev
Mathematics Faculty Publications
Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description ...
A New Method Of Synthesizing Black Birnessite Nanoparticles: From Brown To Black Birnessite With Nanostructures, Shizhi Qian, Marcos A. Cheney, Pradip K. Bhowmik, Sang W. Joo, Wensheng Hou, Joseph M. Okoh
A New Method Of Synthesizing Black Birnessite Nanoparticles: From Brown To Black Birnessite With Nanostructures, Shizhi Qian, Marcos A. Cheney, Pradip K. Bhowmik, Sang W. Joo, Wensheng Hou, Joseph M. Okoh
Mechanical Engineering Faculty Publications
A new method for preparing black birnessite nanoparticles is introduced. The initial synthesis process resembles the classical McKenzie method of preparing brown birnessite except for slower cooling and closing the system from the ambient air. Subsequent process, including wet-aging at 7◦C for 48 hours, overnight freezing, and lyophilization, is shown to convert the brown birnessite into black birnessite with complex nanomorphology with folded sheets and spirals. Characterization of the product is performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA), and N2 adsorption (BET) techniques. Wet-aging and lyophilization times are shown ...
Environmentally Benign Synthesis Of Nanosized Aluminophosphate Enhanced By Microwave Heating, Eng-Poh Ng, Luc Delmotte, Svetlana Mintova
Environmentally Benign Synthesis Of Nanosized Aluminophosphate Enhanced By Microwave Heating, Eng-Poh Ng, Luc Delmotte, Svetlana Mintova
Eng-Poh Ng
The problem addressed with our paper is on the efficient utilization of reacting materials for enhanced syntheses of nanosized aluminophosphate molecular sieve by microwave heating, and decreasing or almost eliminating the related waste. The synthesis procedure deals with the environmental issues concerning the future manufacture re-use and disposal of non-reacted chemicals associated with the production of nanosized aluminophosphate. Nanosized AlPO-18 has been prepared by a multicycle synthesis approach via re-using non-reacted compounds from precursor suspensions with minimal requirement of chemical compensation after recovering of crystalline nanoparticles from each step. This approach is implied as environmentally benign and results in almost ...