Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 32 of 32

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis Of Ordered Arrays Of Multiferroic Nife₂O₄-Pb(Zr₀.₅₂Ti₀.₄₈)O₃ Core-Shell Nanowires, Ming Liu, Xin Li, Hassan Imrane, Yajie Chen, Trevor L. Goodrich, Zhuhua Cai, Katherine S. Ziemer, Jian Y. Huang, Nian X. Sun Jan 2011

Synthesis Of Ordered Arrays Of Multiferroic Nife₂O₄-Pb(Zr₀.₅₂Ti₀.₄₈)O₃ Core-Shell Nanowires, Ming Liu, Xin Li, Hassan Imrane, Yajie Chen, Trevor L. Goodrich, Zhuhua Cai, Katherine S. Ziemer, Jian Y. Huang, Nian X. Sun

Katherine S. Ziemer

A synthesis method was developed for producing core-shell nanowire arrays, which involved a combination of a modified sol-gel process, electrochemical deposition, and subsequent oxidization in anodized nanoporous alumina membranes. This method was applied to generate ordered arrays of one dimensional multiferroic NiFe₂O₄ core and Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT) shell nanostructures. Extensive microstructural, magnetic, and ferroelectric characterizations confirmed that the regular arrays of core-shell multiferroic nanostructures were composed of a spinel NiFe₂O₄ core and perovskite PZT shell. This synthesis method can be readily extended to prepare different core-shell nanowire arrays and is expected to pave the way for one dimensional core-shell nanowire arrays.


Voltage Impulse Induced Bistable Magnetization Switching In Multiferroic Heterostructures, Tianxiang Nan Dec 2010

Voltage Impulse Induced Bistable Magnetization Switching In Multiferroic Heterostructures, Tianxiang Nan

Tianxiang Nan

We report on voltage impulse induced reversible bistable magnetization switching in FeGaB/lead zirconate titanate (PZT) multiferroic heterostructures at room temperature. This was realized through strain-mediated magnetoelectric coupling between ferroelectric PZT and ferromagnetic FeGaB layer. Two reversible and stable voltage-impulse induced mechanical strain states were obtained in the PZT by applying an electric field impulse with its amplitude smaller than the electric coercive field, which led to reversible voltage impulse induced bistable magnetization switching. These voltage impulse induced bistable magnetization switching in multiferroic heterostructures provides a promising approach to power efficient bistable magnetization switching that is crucial for information storage.