Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 39 of 39

Full-Text Articles in Nanoscience and Nanotechnology

New Effects Of Aging And Lattice Intercalation On Surface Properties Of Titanate Nanobelts, Roger Williams May 2013

New Effects Of Aging And Lattice Intercalation On Surface Properties Of Titanate Nanobelts, Roger Williams

Graduate Theses and Dissertations

Titanate nanobelts (NBs) have structural characteristics beyond that of clays. Due to a negatively charged lattice matrix of edge-shared TiO6-octahedra, the location of intercalated cations within the interlayer space may dictate the charge-conductions. This environment may in turn govern the lattice-framework's stability and surface properties, based upon our preliminary

data.

On that basis, these nanomaterials have been found in our lab to possess superb biological compatibility that is closely related to the types of the intercalated cations. In addition, a prolonged agitation was proven to enable us to manipulate the titanate NBs' length. In a parallel study, a ripening was …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …


Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch May 2013

Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch

Graduate Theses and Dissertations

A transparent nanofluidic system with embedded sensing electrodes was designed and fabricated by integrating Atomic Force Microscopy (AFM) nanolithography, Focused Ion Beam (FIB) milling and metal deposition, and standard microfabrication processing. The fabrication process started with the evaporation of chrome/gold (Cr/Au) onto a Pyrex 7740 wafer followed by photolithography and wet etching of the microchannels. The wafer was patterned a second time to form Au microelectrodes with 15-45 micrometer separation gaps in the nanochannel region. Sensing electrodes (up to one micron wide) were then deposited using FIB to bridge the gaps. The nanochannels were realized through both AFM nanolithography and …


Synthesis And Characterization Of Iron Pyrite Nanocrystals For Photovoltaic Devices, Scott Curtis Mangham May 2013

Synthesis And Characterization Of Iron Pyrite Nanocrystals For Photovoltaic Devices, Scott Curtis Mangham

Graduate Theses and Dissertations

Iron pyrite nanocrystals have been synthesized using a hot-injection method with a variety of amines and characterized with properties necessary for photovoltaic devices. The iron pyrite nanocrystals were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption, micro-Raman, and micro-Photoluminescence. The optical absorbance spectra showed the large absorption in the visible and near infrared spectral range for the nanocrystals as well as to show the band gap. The face-centered cubic crystal structure of the iron pyrite nanocrystals was shown by matching the measured X-ray diffraction pattern to a face-centered cubic iron pyrite reference pattern. Using Bragg's law …


Fabrication And Characterization Of Thinner Solid-State Nanopores, Denis Forbi Tita Aug 2012

Fabrication And Characterization Of Thinner Solid-State Nanopores, Denis Forbi Tita

Graduate Theses and Dissertations

Solid State nanopores that are fabricated by the ion beam sculpting process and electron beam drilling have shown great promise as a sensing device for DNA and protein molecules. Even though biological pores such as the alpha-Haemolysin have been in use for quite some time, the use of solid state Nanopores in single biomolecule detection has been on the rise since the mid 1990s. Solid State nanopores have an advantage over biological pores in that they are more robust, stable, and can be sculpted to any desired size for use in translocation experiments. One of the major challenges in Nanopore …


Molecular Dynamics Study Of Diffusion Of O2 Penetrates In Uncrosslinked Polydimethysiloxane (Pdms), Crosslinked Pdms, And Pdms-Based Nanocomposites, Varun Ullal May 2012

Molecular Dynamics Study Of Diffusion Of O2 Penetrates In Uncrosslinked Polydimethysiloxane (Pdms), Crosslinked Pdms, And Pdms-Based Nanocomposites, Varun Ullal

Graduate Theses and Dissertations

Molecular dynamics simulations are used to study diffusion of O2 molecules in pure polydimethysiloxane (PDMS), crosslinked PDMS, and PDMS-based nanocomposites. The PDMS chains and penetrates are modeled using a hybrid interatomic potential which treats the Si-O atoms along the chain backbone explicitly while coarse-graining the methyl side groups and penetrates. By tracking the diffusion of penetrates in the system and subsequently computing their mean-squared displacement, diffusion coefficients are obtained. In pure PDMS models of varying molecular weight, diffusivity of the O22 penetrates is found to have an inverse relationship with chain length. Simulation models with longer chains …


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Graduate Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths. …


Experimental Study Of Novel Materials And Module For Cryogenic (4k) Superconducting Multi-Chip Modules, Ranjith John May 2012

Experimental Study Of Novel Materials And Module For Cryogenic (4k) Superconducting Multi-Chip Modules, Ranjith John

Graduate Theses and Dissertations

The objectives of this proposal are to understand the science and technology of interfaces in the packaging of superconducting electronic (SCE) multichip modules (MCMs) at 4 K. The thermal management issue of the current SCE-MCMs was examined and the package assembly was optimized. A novel thermally conducting and electrically insulating nano-engineered polymer was developed for the thermal management of SCE-MCMs for 4 K cryogenic packaging. Finally, the nano-engineered polymer was integrated as underfill in a SCE-MCM and the thermal and electrical performance of SCE-MCM was demonstrated at 4 K.

Niobium based superconducting electronics (SCE) are the fastest known digital logic …


High Frequency Characterization Of Carbon Nanotube Networks For Device Applications, Emmanuel Decrossas May 2012

High Frequency Characterization Of Carbon Nanotube Networks For Device Applications, Emmanuel Decrossas

Graduate Theses and Dissertations

This work includes the microwave characterization of carbon nanotubes (CNTs) to design new CNTs-based high frequency components. A novel developed method to extract the electrical properties over a broad microwave frequency band from 10 MHz to 50 GHz of carbon nanotubes (CNTs) in a powder form is performed. The measured scattering parameters (S-parameters) with a performance network analyzer are compared to the simulated one obtained from an in-house computed mode matching technique (MMT). An optimized first order gradient method iteratively changes the unknown complex permittivity parameters to map the simulated S-parameters with the measured one until convergence criteria are satisfied. …