Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering

2017

Iowa State University

Smart concrete

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Damage Detection, Localization And Quantification In Conductive Smart Concrete Structures Using A Resistor Mesh Model, Austin Downey, Antonella D’Alessandro, Micah Baquera, Enrique García-Macías, Daniel Rolfes, Filippo Ubertini, Simon Laflamme, Rafael Castro-Triguero Oct 2017

Damage Detection, Localization And Quantification In Conductive Smart Concrete Structures Using A Resistor Mesh Model, Austin Downey, Antonella D’Alessandro, Micah Baquera, Enrique García-Macías, Daniel Rolfes, Filippo Ubertini, Simon Laflamme, Rafael Castro-Triguero

Civil, Construction and Environmental Engineering Publications

Interest in self-sensing structural materials has grown in recent years due to their potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for structural health monitoring due to their numerous possible field applications, ease of use, and long-term stability. Additionally, cement-based sensors offer a unique opportunity for monitoring of civil concrete structures because of their compatibility with new and existing infrastructure. In this paper, we propose the use of a computationally efficient resistor mesh model to detect, localize and quantify damage in structures constructed from conductive cement composites. The proposed ...


Enhanced Lumped Circuit Model For Smart Nanocomposite Cement-Based Sensors Under Dynamic Compressive Loading Conditions, Enrique García-Macías, Austin Downey, Antonella D’Alessandro, Rafael Castro-Triguero, Simon Laflamme, Filippo Ubertini Jun 2017

Enhanced Lumped Circuit Model For Smart Nanocomposite Cement-Based Sensors Under Dynamic Compressive Loading Conditions, Enrique García-Macías, Austin Downey, Antonella D’Alessandro, Rafael Castro-Triguero, Simon Laflamme, Filippo Ubertini

Civil, Construction and Environmental Engineering Publications

Smart composite nanostructured materials represent one of the fastest-growing areas of interest among scientists in recent years and, in particular, carbon nanotube (CNT) cement-based composites are attracting more and more attention. These composites exhibit self-sensing capabilities providing measurable variations of their electrical properties under the application of mechanical deformations. Together with this exceptional property, the similarity and compatibility between these composites and structural concrete suggest the possibility of developing distributed embedded strain-sensing systems with substantial improvements in the cost-effectiveness in applications to large-scale concrete structures. In order to design and optimize CNT reinforced cement based dynamic sensors, it is fundamental ...