Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Damage Detection, Localization And Quantification In Conductive Smart Concrete Structures Using A Resistor Mesh Model, Austin Downey, Antonella D’Alessandro, Micah Baquera, Enrique García-Macías, Daniel Rolfes, Filippo Ubertini, Simon Laflamme, Rafael Castro-Triguero Oct 2017

Damage Detection, Localization And Quantification In Conductive Smart Concrete Structures Using A Resistor Mesh Model, Austin Downey, Antonella D’Alessandro, Micah Baquera, Enrique García-Macías, Daniel Rolfes, Filippo Ubertini, Simon Laflamme, Rafael Castro-Triguero

Civil, Construction and Environmental Engineering Publications

Interest in self-sensing structural materials has grown in recent years due to their potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for structural health monitoring due to their numerous possible field applications, ease of use, and long-term stability. Additionally, cement-based sensors offer a unique opportunity for monitoring of civil concrete structures because of their compatibility with new and existing infrastructure. In this paper, we propose the use of a computationally efficient resistor mesh model to detect, localize and quantify damage in structures constructed from conductive cement composites. The proposed ...


Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi Aug 2017

Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi

Civil, Construction and Environmental Engineering Publications

The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC) elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i) the repeatability and accuracy of sensors’ behavior ...


Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey Jul 2017

Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

The monitoring of civil structures is critical in ensuring users' safety. Structural health monitoring (SHM) is the automation of this monitoring task. It is typically used to identify incipient damages through a spatio-temporal comparison in structural behaviors. Traditional sensors exhibit mechanical characteristics that are usually very different from those of the structures they monitor, which is a factor limiting their durability. Ideally, the material of a sensor would share the same mechanical characteristics as the material onto or into which it is installed. A solution is to fabricate multifunctional materials, capable of serving both structural and sensing functions, also known ...


Enhanced Lumped Circuit Model For Smart Nanocomposite Cement-Based Sensors Under Dynamic Compressive Loading Conditions, Enrique García-Macías, Austin Downey, Antonella D’Alessandro, Rafael Castro-Triguero, Simon Laflamme, Filippo Ubertini Jun 2017

Enhanced Lumped Circuit Model For Smart Nanocomposite Cement-Based Sensors Under Dynamic Compressive Loading Conditions, Enrique García-Macías, Austin Downey, Antonella D’Alessandro, Rafael Castro-Triguero, Simon Laflamme, Filippo Ubertini

Civil, Construction and Environmental Engineering Publications

Smart composite nanostructured materials represent one of the fastest-growing areas of interest among scientists in recent years and, in particular, carbon nanotube (CNT) cement-based composites are attracting more and more attention. These composites exhibit self-sensing capabilities providing measurable variations of their electrical properties under the application of mechanical deformations. Together with this exceptional property, the similarity and compatibility between these composites and structural concrete suggest the possibility of developing distributed embedded strain-sensing systems with substantial improvements in the cost-effectiveness in applications to large-scale concrete structures. In order to design and optimize CNT reinforced cement based dynamic sensors, it is fundamental ...


Continuous And Embedded Solutions For Shm Of Concrete Structures Using Changing Electrical Potential In Self-Sensing Cement-Based Composites, Austin Downey, Enrique Garcia-Macias, Antonella D'Alessandro, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini Apr 2017

Continuous And Embedded Solutions For Shm Of Concrete Structures Using Changing Electrical Potential In Self-Sensing Cement-Based Composites, Austin Downey, Enrique Garcia-Macias, Antonella D'Alessandro, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability ...