Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Manufacturing

Securemems: Selective Deposition Of Energetic Materials, Trevor J. Fleck, Josiah R. Thomas, Lillian F. Miles, Allison K. Murray, Zane A. Roberts, Raghav Ramachandran, I Emre Gunduz, Steven F. Son, George T. Chiu, Jeffrey F. Rhoads Aug 2015

Securemems: Selective Deposition Of Energetic Materials, Trevor J. Fleck, Josiah R. Thomas, Lillian F. Miles, Allison K. Murray, Zane A. Roberts, Raghav Ramachandran, I Emre Gunduz, Steven F. Son, George T. Chiu, Jeffrey F. Rhoads

The Summer Undergraduate Research Fellowship (SURF) Symposium

There exists a pressing operational need to secure and control access to high-valued electromechanical systems, and in some cases render them inoperable. Developing a reliable method for depositing energetic materials will allow for the near-seamless integration of electromechanical systems and energetic material, and, in turn, provide the pathway for security and selective destruction that is needed. In this work, piezoelectric inkjet printing was used to selectively deposit energetic materials. Nanothermites, comprising of nanoscale aluminum and nanoscale copper oxide suspended in dimethyl-formamide (DMF), were printed onto silicon wafers, which enabled both thermal and thrust measurements of the decomposing energetic material. Various …


Integrating Systems For Liquid/Substrate Characterization And Functional Printing, Jianyi Du, J. William Boley, Rebecca K. Kramer Aug 2015

Integrating Systems For Liquid/Substrate Characterization And Functional Printing, Jianyi Du, J. William Boley, Rebecca K. Kramer

The Summer Undergraduate Research Fellowship (SURF) Symposium

Gallium-Indium alloys are recently applied in fabricating soft devices, such as stretchable sensors, electric circuits, micro pumps and optics. Its printability demonstrates the possibility for a wide extension of the application. Current fabrication methods are inefficient when printing is most handled manually, and are highly dependent on material properties. There is need for a fast way to characterize material properties, and to functionally print the given shape on the substrate. This paper presents the construction of an efficiently integrated system with optical imaging and functional printing for Gallium-Indium alloys. The imaging section allows for characterization of material properties to fast …