Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Manufacturing

Additive Manufacturing Of Stainless Steel -- Copper Functionally Graded Materials Via Inconel 718 Interlayer, Xinchang Zhang, Lan Li, Frank W. Liou Nov 2021

Additive Manufacturing Of Stainless Steel -- Copper Functionally Graded Materials Via Inconel 718 Interlayer, Xinchang Zhang, Lan Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The joining of dissimilar materials is becoming increasingly prevalent to integrate different material properties to enhance design flexibility and overall performance. This study introduced an innovative approach to additively manufacture copper on 316L stainless steel (SS316L) via Inconel 718 interlayers using directed energy deposition (DED). The novel multi-material structure was studied both experimentally and theoretically. The microstructure, tensile properties, microhardness, and thermal performance of the structure were characterized. Residual stress distribution over the structure was revealed by experimental-validated numerical modeling. The result exhibits that defect-free structures with excellent interfacial bonding can be achieved by introducing Inconel 718 interlayers. The bonding …


Design And Fabrication Of Functionally Graded Material From Ti To Γ-Tial By Laser Metal Deposition, Xueyang Chen, Lei Yan, Joseph William Newkirk, Frank W. Liou Aug 2017

Design And Fabrication Of Functionally Graded Material From Ti To Γ-Tial By Laser Metal Deposition, Xueyang Chen, Lei Yan, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

Functionally graded material (FGM) is one kind of advanced material characterized by a gradual change in properties as the position varies. The spatial variation of compositional and microstructure over volume is aimed to control corresponding functional properties. In this research, when 100% γ-TiAl was directly deposited on pure Ti substrate, cracks were formed within the γ-TiAl layer. Then a six-layer crack-free functionally graded material of Ti/TiAl was designed and fabricated by laser metal deposition (LMD) method, with composition changing from pure Ti on one side to 100% γ-TiAl on the other side. The fabricated FGM was characterized for material properties …


Freeze-Form Extrusion Fabrication Of Functionally Graded Material Composites Using Zirconium Carbide And Tungsten, Ang Li, Aaron S. Thornton, Bradley K. Deuser, Jeremy Lee Watts, Ming-Chuan Leu, Greg Hilmas, Robert G. Landers Aug 2012

Freeze-Form Extrusion Fabrication Of Functionally Graded Material Composites Using Zirconium Carbide And Tungsten, Ang Li, Aaron S. Thornton, Bradley K. Deuser, Jeremy Lee Watts, Ming-Chuan Leu, Greg Hilmas, Robert G. Landers

Materials Science and Engineering Faculty Research & Creative Works

Ultra-high-temperature ceramics are being investigated for future use in aerospace applications due to their superior thermo-mechanical properties, as well as their oxidation resistance, at temperatures above 2000⁰C. However, their brittleness makes them susceptible to thermal shock failure. As graded composites, components fabricated as functionally-graded materials (FGMs) can combine the superior properties of ceramics with the toughness of an underlying refractory metal. This paper discusses the grading of two materials through the use of a Freeze-form Extrusion Fabrication (FEF) system to build FGM parts consisting of zirconium carbide (ZrC) and tungsten (W). Aqueous-based colloidal suspensions of ZrC and W were developed …