Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Manufacturing

Error Mapping Of Build Volume In Selective Laser Melting, Ninad Kulkarni Jan 2017

Error Mapping Of Build Volume In Selective Laser Melting, Ninad Kulkarni

Masters Theses

“Selective laser melting is one of the commonly used additive manufacturing processes employed for production of functional part. Therefore, quality aspects such as dimensional accuracy have become a point of great interest. Like all of the other additive manufacturing processes selective laser melting process suffers from the issue if having wide range of process parameters making the process control a complex task. Additionally, issues specific to the selective laser melting process such as position dependency of accuracy of the part, makes it difficult to predict the resulting dimensional inconsistencies in the part manufactured by this processes. This research is an …


Ti-Fe Intermetallics Analysis And Control In Joining Titanium Alloy And Stainless Steel By Laser Metal Deposition, Wei Li Jan 2017

Ti-Fe Intermetallics Analysis And Control In Joining Titanium Alloy And Stainless Steel By Laser Metal Deposition, Wei Li

Masters Theses

"Direct fusion joining titanium alloy and stainless steel can cause brittle Ti-Fe intermetallics which compromise the mechanical properties of diffusion bonds between titanium alloys and stainless steel. Therefore, filler metals are required as transition layers. In this research, stainless steel metallic powder was directly deposited on the titanium alloy substrate by laser beam, the Ti-Fe intermetallic phases formed in this process were investigated through analyzing fracture morphology, phase identification, and Vickers Hardness Number (VHN). After that, Laser Metal Deposition (LMD) was applied to explore a new fabricating process to join Ti6Al4V and SS316. A transition composition route was introducedTi6Al4V → …