Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Applied Mechanics

Final Design Review Report: The Underdogs, Parker Johnson, Jack Montgomery, Katherine Thomas Nov 2020

Final Design Review Report: The Underdogs, Parker Johnson, Jack Montgomery, Katherine Thomas

Mechanical Engineering

Aspen is a three-legged dog with mobility issues from Berkeley, California. She was hit by a car and her rear left leg was amputated at the hip. Robin Swanson, Aspen's owner, and her friend, Audrey Beil, are the sponsors for this project. Jack Montgomery, Katherine Thomas, and Parker Johnson, “The Underdogs”, are tasked with helping Aspen regain some of her mobility and the ability to go on walks. Research was done into the problem by talking with the sponsors and looking into existing products, designs, and patents. This document, the Final Design Review Report, outlines the background information, problem specification, …


2 Degree Of Freedom Robotic Leg, Oded Tzori, Henry Terrell, Adan Martinez Nov 2020

2 Degree Of Freedom Robotic Leg, Oded Tzori, Henry Terrell, Adan Martinez

Mechanical Engineering

Professor Xing, an assistant professor at Cal Poly, proposed the 2 DOF Robotic Leg project for this quarter’s senior project class. The project is to build a robotic leg attached at the hip to a stand, which will be used as a teaching tool and eventually help develop Cal Poly’s very own robotic quadruped. Since this project has multiple uses after its completion, there are multiple customers that it must perform well for: the Cal Poly Mechanical Engineering (ME) Department, the ME Lab instructors, and the students. The Scope of Work (Sections 2 & 3) is composed of 2 main …


Spring Loaded Camming Device, Jared S. Christner, Kaitlin O. Deherrera, Ryan W. Edwards, John S. Hickey Jun 2020

Spring Loaded Camming Device, Jared S. Christner, Kaitlin O. Deherrera, Ryan W. Edwards, John S. Hickey

Mechanical Engineering

Spring loaded camming devices or “cams” are used in traditional rock climbing as a means of active fall protection. Climbers place cams in cracks and fissures in the rock wall. The cam’s lobes press against the walls, locking it in place, anchoring the climber in case of a fall. Currently, there is a lack of large cams on the market. Only two small companies produce cams that are usable in cracks 6.5 inches wide and larger, however their designs are either too heavy and/or lack features to be comfortable. We are a group of mechanical engineering students at Cal Poly …


Automated Drone Calibration System, Jackie Kelly Jong-Mee Paik, Zach Nathan Richter, Tyler Wilson Van Den Berg, Ryan Alexander Zhan, Matthew Ward Carlson Jun 2020

Automated Drone Calibration System, Jackie Kelly Jong-Mee Paik, Zach Nathan Richter, Tyler Wilson Van Den Berg, Ryan Alexander Zhan, Matthew Ward Carlson

Mechanical Engineering

The final design review of the Inspired Flight Calibration Team senior project will detail the process used to complete a verification prototype of a drone calibration device and discuss lessons learned and suggestions for improving this device. Going from brainstorming and conceptual prototyping all the way through verification prototyping and testing, we were able to design a gyroscopic device that met Inspired Flight’s needs for the flight sensor calibration of their drones. The mechanical design involved comprehensive CAD models and hands-on manufacturing. The mechatronics side of the project worked heavily with electrical wiring and writing custom software to communicate and …


Safran Seat Attachment System, Craig John Kimball, Tyler Bragg, Lynette Cox Jun 2020

Safran Seat Attachment System, Craig John Kimball, Tyler Bragg, Lynette Cox

Mechanical Engineering

This final design review (FDR) document outlines the senior design project being carried out by a team of mechanical engineering undergraduate students attending California Polytechnic State University, San Luis Obispo for Safran Seats in Santa Maria, CA. The project originally was to design, build, and test a universal attachment to secure a widebody business class seat to seven aircraft models with different seat track geometry. The goal was to design, document, and create a finished product that fits design, weight, and manufacturing requirements, as well as passes static 9G FWD testing. Structural analysis, manufacturing analysis, FEA, and CAD assemblies will …


Fluid Power Vehicle Challenge, Jacob Torrey, Kayla Londono, Bryson Chan, Aaron Trujillo Apr 2020

Fluid Power Vehicle Challenge, Jacob Torrey, Kayla Londono, Bryson Chan, Aaron Trujillo

Mechanical Engineering

The FPVC combines mechanical engineering disciplines to design and manufacture a vehicle that utilizes hydraulic power. The FDR covers the final manufacturing process and verification processes developed during the front end of research and analysis built upon the Critical Design Review (CDR) and the PDR (Preliminary Design Review). This report showcases the design decisions and extensive research that supports the continuing efforts by the Team Pump My Ride, to build upon the accomplishments of Cal Poly’s previous team, The Incompressibles. The FDR presents how Team Pump My Ride produced the design changes from the CDR and PDR to achieve improvements …


Cal Poly Supermileage Dynamometer, Jacob Randall, Nate Deffenbaugh, Kyle Milgram Mar 2020

Cal Poly Supermileage Dynamometer, Jacob Randall, Nate Deffenbaugh, Kyle Milgram

Mechanical Engineering

Our senior project involves designing a chassis dynamometer capable of simulating variable loads for the Cal Poly Supermileage Vehicle (SMV) team. The chassis dynamometer we are developing uses an alternator to develop additional resistance that the vehicle will have to overcome while testing. To implement a control system for the variable load, we use an Arduino Nano paired with multiple sensors and drivers. This control system allows the user to select different levels of resistance that correlate with different road grades. We designed a custom Printed Circuit Board (PCB) that will contain all the electrical components needed for the control …


Supermileage Vehicle Drivetrain Design, Griffin M. Kraemer, Kai Meter, Arya Mahdavian Mar 2020

Supermileage Vehicle Drivetrain Design, Griffin M. Kraemer, Kai Meter, Arya Mahdavian

Mechanical Engineering

The current Cal Poly Supermileage team has faced issues regarding the efficiency and durability of their SMV vehicle’s drivetrain. After conducting research to solve their current issues, we developed a final drivetrain configuration that will improve the performance and life of the vehicle. This report outlines some of the completed research including: a table of designs used by other teams, a table of patents that can be applied to our design, and a list of technical literature we can use to better our design. It also summarizes our goals and objectives, including a table of the engineering specifications of the …