Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Applied Mechanics

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was developed. …


Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira Sep 2018

Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira

Journal of Applied Packaging Research

Packages made of corrugated paper are fundamental to the protection, transportation and handling of the appliance product market. During the storage and sales stages of a product, the package must resist compressive loads in different directions beyond moderate impacts. In this context, the objective of this work is to develop and implement a post-processor that allows the simultaneous analysis of two of the most common failure modes of packages made of corrugated paper: failure due to tensile or compressive stress limit, and failure due to local buckling, when the buckling of the faces of the corrugated paper between two peaks …


Improving Sheet Molding Compound, Zebulon G. Mcreynolds Sep 2018

Improving Sheet Molding Compound, Zebulon G. Mcreynolds

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Zebulon McReynolds

An important attribute of the compression molding process is the requirement of (Sheet Molding Compound) SMC. The fibers, commonly glass or carbon fibers, are impregnated with thermoset resin and collected in continuous form on a conveyor belt. The SMC charge is rolled between rollers to wet out the fibers with resin. The SMC charge is then compression molded to a desired part reflecting the designed mold. The part could be an automotive part or any other industrial applicable part. Compression molding with fibers and polymers is the largest component of most of the manufacturing industries in the world. …


Microstructural Characterization Of Shear Transformation Zones And Modeling Indentation Size Effect In Amorphous Polymers, Leila Malekmotiei Jun 2018

Microstructural Characterization Of Shear Transformation Zones And Modeling Indentation Size Effect In Amorphous Polymers, Leila Malekmotiei

LSU Doctoral Dissertations

The first aim of this work is developing a procedure for experimental and analytical characterization of nano-scale microstructures which mediate large scale deformation in amorphous polymers. Glassy polymers are extensively used as high impact resistant, low density, and clear materials in industries. Nevertheless, their response under severe loading conditions is yet to be appropriately unraveled. Due to the lack of long-range order in the microstructures of glassy solids, their plastic deformation is different from that in crystalline solids. Shear Transformation Zones (STZs) are believed to be the main plasticity carriers in amorphous solids and defined as the localized atomic or …