Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Applied Mechanics

High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han Dec 2012

High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han

Faculty Publications

In this study, we have fabricated high performance low temperature solid oxide fuel cells (LT-SOFCs) with both acicular anodes and cathodes with thin Gd-doped ceria (GDC) electrolyte film. The acicular Ni-Gd0.1Ce0.9O2−δ (Ni-GDC) anode was prepared using freeze drying tape casting, while the hierarchically porous cathode with nano-size Sm0.5Sr0.5CoO3 (SSC) particles covering an acicular GDC skeleton was prepared by a combination of freeze drying tape casting and self-rising approaches. The acicular electrodes with 5–200 μm pores/channels enhance mass transport, while SSC particles of about 50 nm in the cathode promote …


Formula Sae Turbocharger Engine Development, Eric Griess, Kevin Mccutcheon, Matthew Roberts, William Chan Dec 2012

Formula Sae Turbocharger Engine Development, Eric Griess, Kevin Mccutcheon, Matthew Roberts, William Chan

Mechanical Engineering

This project, Formula SAE Turbocharger System Development, was sponsored by the Cal Poly, San Luis Obispo Formula SAE team. The team proposed this project in order to have a powerful yet lightweight engine so they can be extremely competitive at their competition. The baseline output of the single cylinder 450cc engine (2006 Yamaha WR450F) was 46 horsepower and 27 ft-lb of torque. The goal of this project was to increase the output of that engine to 60 horsepower and 35 ft-lb through the use of a turbocharger.


Design, Construction, And Evaluation Of An Automated Chicken Coop Door, Kyle Inks Jun 2012

Design, Construction, And Evaluation Of An Automated Chicken Coop Door, Kyle Inks

BioResource and Agricultural Engineering

This senior project takes a look into the design, construction, and evaluation of an automated chicken coop door. The idea and need for such a door came from my mother Jan Inks. The parameters for the project include, low production cost, easy installation on existing coops, sleek design, automatically open at a set time in the morning, and automatically close at a set time in the evening.


California Olive Ranch Hedger, Tyler Enos, Seth Abbott, David Gamba Jun 2012

California Olive Ranch Hedger, Tyler Enos, Seth Abbott, David Gamba

Mechanical Engineering

The purpose of this project is to evaluate the problems of the current KCI (Kingsburg Cultivator Incorporated) olive tree hedger in use at California Olive Ranch (COR) in Artois, CA, and then correct these problems which should yield a better performing, more efficient, and reliable machine. These problems include: the hydraulic oil temperature getting too high, the saw blades not having enough horsepower, and poor cutting performance due to operator error as well as terrain variations.


Benchmarking Of A Single-Cylinder Engine Toward The Development Of A Direct Fuel-Injection System, Michael J. Nienhuis Jun 2012

Benchmarking Of A Single-Cylinder Engine Toward The Development Of A Direct Fuel-Injection System, Michael J. Nienhuis

Masters Theses

In this study, the performance and efficiency of a single-cylinder gasoline, fourstroke cycle engine was benchmarked in support of the Formula SAE student project. The development of an engine test stand, instrumentation, data acquisition, and test plan is described in detail. Experimental results in the areas of engine performance and efficiency are discussed. Physical test data were used to refine a previous model of a single-cylinder, gasoline, direct-injection engine. Results from this effort are discussed and compared to those obtained in a preliminary study. The current work advances the development of more efficient power-train technologies for application in small displacement …


Formula Hybrid Drivetrain Design, Zachary (Zak) Mcfarland, Alex Pruitt, William Domhart Jun 2012

Formula Hybrid Drivetrain Design, Zachary (Zak) Mcfarland, Alex Pruitt, William Domhart

Mechanical Engineering

The Formula Hybrid senior project group was tasked with designing and building a drivetrain system for the Cal Poly Society of Automotive Engineers (SAE) Formula Hybrid (FHSAE) team. FHSAE gave customer requirements for performance and geometry for the drivetrain and the FHSAE rulebook has guidelines regarding safety requirements. The team chose to compete in the electric category of the 2012 FHSAE competition. After getting feedback from previous car performance and researching different powertrain options, the senior project team arrived at three conceptual ideas. Using a quality function deployment method, the senior project team chose the concept where two motors independently …


A New Approach For The Preparation Of Variable Valence Rare Earth Alloys From Nano Rare Earth Oxides At A Low Temperature In Molten Salt, Milin Zhang, Yongde Yan, Wei Han, Xing Li, Zhiyao Hou, Yang Tian, Ke Ye, Lihong Bao, Xiaodong Li, Zhijian Zhang Feb 2012

A New Approach For The Preparation Of Variable Valence Rare Earth Alloys From Nano Rare Earth Oxides At A Low Temperature In Molten Salt, Milin Zhang, Yongde Yan, Wei Han, Xing Li, Zhiyao Hou, Yang Tian, Ke Ye, Lihong Bao, Xiaodong Li, Zhijian Zhang

Faculty Publications

The solubility of RE2O3 (RE = Eu, Sm, and Yb) with variable valence in molten salts is extremely low. It is impossible to directly obtain variable valence metals or alloys from RE2O3 using electrolysis in molten salts. We describe a new approach for the preparation of variable valence rare earth alloys from nano rare earth oxide. The excellent dispersion of nano–Eu2O3 in LiCl–KCl melts was clearly observed using a luminescent feature of Eu3+ as a probe. The ratio of solubility of nano-Sm2O3/common Sm2O3 …


Semi-Active Damping For An Intelligent Adaptive Ankle Prosthesis, Andrew K. Lapre Jan 2012

Semi-Active Damping For An Intelligent Adaptive Ankle Prosthesis, Andrew K. Lapre

Masters Theses 1911 - February 2014

Modern lower limb prostheses are devices that replace missing limbs, making it possible for lower limb amputees to walk again. Most commercially available prosthetic limbs lack intelligence and passive adaptive capabilities, and none available can adapt on a step by step basis. Often, amputees experience a loss of terrain adaptability as well as stability, leaving the amputee with a severely altered gait. This work is focused on the development of a semi-active damping system for use in intelligent terrain adaptive ankle prostheses. The system designed consists of an optimized hydraulic cylinder with an electronic servo valve which throttles the hydraulic …