Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Structural Engineering

Pressure Vessel

Articles 1 - 2 of 2

Full-Text Articles in Applied Mechanics

Dynamic Loading Experimentation And Surface Imaging Of Pressure Vessel Loadcell Fractures, Austin T. Sumner Jan 2020

Dynamic Loading Experimentation And Surface Imaging Of Pressure Vessel Loadcell Fractures, Austin T. Sumner

Honors College Theses

Pressure vessels are very common pieces of equipment in industry and they are used for a variety of applications. It is standard in industry to rest pressure vessels on load cells. For some special cases, the pressure vessels are rested on load cells instead of solid foundation. Pressure vessels and their loadcells are generally designed for static environmental conditions and loading and tend to experience adverse effects when exposed to dynamic environments, such as hurricanes and earthquakes. These adverse-loading conditions cause vibrations and asymmetrical loading on the load cells, which can concurrently cause unexpected failure. This research investigates the effects …


Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was developed. …