Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Applied Mechanics

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim Oct 2019

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …


Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani Mar 2018

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani

Doctoral Dissertations

This dissertation is comprised of six chapters. In the first chapter the motivation of this research, which was modeling the deformation behavior and strength characteristics of soils under internal erosion, is briefly explained. In the second chapter a micromechanis-based stress-strain model developed for prediction of sand-silt mixtures behavior is presented. The components of the micromechanics-based model are described and undrained behavior of six different types of sand-silt mixtures is predicted for several samples with different fines contents. The need for a more comprehensive compression model for sand-silt mixtures is identified at the end of this chapter. This desired compression model …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …