Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Applied Mechanics

Adhesion And Deformation Mechanisms Of Polydopamine And Polytetrafluoroethylene: A Multiscale Computational Study, Matthew Brownell Dec 2020

Adhesion And Deformation Mechanisms Of Polydopamine And Polytetrafluoroethylene: A Multiscale Computational Study, Matthew Brownell

Graduate Theses and Dissertations

Polydopamine (PDA) has been shown to bond via covalent bonding, van der Waals forces, and hydrogen bonding and is known to adhere strongly to almost any material. The application of PDA between a substrate and a PTFE surface coating has resulted in low friction and a greatly reduced wear rate. Previous research probing the capabilities and limitations of PDA/PTFE films have studied the wear and mechanical properties of the film, but the overall adhesive and deformation mechanisms remain unclear.

In this research, we investigate the tribological properties of PDA and PTFE molecules and composites from the atomic to the microscale …


Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman Jan 2009

Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman

Birck and NCN Publications

Carbon nanotubes (CNTs) have gained increased interest in dynamic atomic force microscopy (dAFM) as sharp, flexible, conducting, nonreactive tips for high-resolution imaging, oxidation lithography, and electrostatic force microscopy. By means of theory and experiments we lay out a map of several distinct tapping mode AFM oscillation states for CNT tipped AFM cantilevers: namely, noncontact attractive regime oscillation, intermittent contact with CNT slipping or pinning, or permanent contact with the CNT in point or line contact with the surface while the cantilever oscillates with large amplitude. Each state represents fundamentally different origins of CNT-surface interactions, CNT tip-substrate dissipation, and phase contrast …