Open Access. Powered by Scholars. Published by Universities.®

Acoustics, Dynamics, and Controls Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Acoustics, Dynamics, and Controls

Cam-Based Pose-Independent Counterweighting For Partial Body-Weight Support In Rehabilitation, Ashish Shinde Oct 2017

Cam-Based Pose-Independent Counterweighting For Partial Body-Weight Support In Rehabilitation, Ashish Shinde

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents the design and testing of a body weight support system for gait training in a two-dimensional workspace. Extension of the system to a three-dimensional workspace is not within the scope of this thesis.

Gait dysfunctions are changes in normal walking patterns, often related to a disease or abnormality in different areas of the body. There are numerous body weight support (BWS) systems present in the market which are applied to rehabilitation scenarios in mobility recovery like in gait training. But most of these BWE systems are costly and generally are stationary devices. A major drawback of such …


Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling Aug 2017

Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

An Unmanned Aircraft System (UAS) is a Cyber-Physical System (CPS) in which a host of real-time computational tasks contending for shared resources must be cooperatively managed to obtain mission objectives. Traditionally, control of the UAS is designed assuming a fixed, high sampling rate in order to maintain reliable performance and margins of stability. But emerging methods challenge this design by dynamically allocating resources to computational tasks, thereby affecting control and mission performance. To apply these emerging strategies, a characterization and understanding of the effects of timing on control and trajectory following performance is required. Going beyond traditional control evaluation techniques, …


Design Of A Flexible Control Platform And Miniature In Vivo Robots For Laparo-Endoscopic Single-Site Surgeries, Lou P. Cubrich Dec 2016

Design Of A Flexible Control Platform And Miniature In Vivo Robots For Laparo-Endoscopic Single-Site Surgeries, Lou P. Cubrich

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Minimally-invasive laparoscopic procedures have proven efficacy for a wide range of surgical procedures as well as benefits such as reducing scarring, infection, recovery time, and post-operative pain. While the procedures have many advantages, there are significant shortcomings such as limited instrument motion and reduced dexterity. In recent years, robotic surgical technology has overcome some of these limitations and has become an effective tool for many types of surgeries. These robotic platforms typically have an increased workspace, greater dexterity, improved ergonomics, and finer control than traditional laparoscopic methods. This thesis presents the designs of both a four degree-of-freedom (DOF) and 5-DOF …


Dynamic Responses Of Wheel-Rail Systems With Block Dampers, Tzuyu Tseng Dec 2016

Dynamic Responses Of Wheel-Rail Systems With Block Dampers, Tzuyu Tseng

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The wheel-rail interaction problem has been widely studied in the past few decades. In this problem, dynamic responses at the contact areas remain the central issue since they induce damage to the rail over time. In particular, the dynamic responses at the contact areas between the wheels and rails present difficulties in understanding and mathematical modeling. Even with the computer power one has today, its mathematical modeling employs the versatile numerical analysis method, the finite element method (FEM) remains a formidable challenge due to its extremely small contact areas and in turn the extremely high stress levels. In addition, friction …


Control Of Responses Of Smart Plate Structures Under Non-Stationary Random Excitations, Xiaojian Yang Dec 2014

Control Of Responses Of Smart Plate Structures Under Non-Stationary Random Excitations, Xiaojian Yang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis is concerned with an investigation of the control of responses of plate structures with piezoelectric layers and under complicated excitations modeled as a non-stationary random process. The plate structures and piezoelectric layers are both discretized by the mixed formulation finite element method (FEM).

The investigation consists of three parts. The first part is a literature survey and theoretical development. The second part is the eigenvalue solution and computation of uncontrolled response statistics of laminated plate structures under nonstationary random excitations. The final part is the introduction and application of the stochastic central difference (SCD) method that was presented …


Optimal Reduction Of Electrical Energy Consumption By Supply Air Ac Motors, Keyhan Rafiee Sep 2012

Optimal Reduction Of Electrical Energy Consumption By Supply Air Ac Motors, Keyhan Rafiee

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The Nebraska Center for Energy Sciences Research (NCER) at the University of Nebraska-Lincoln (UNL) strives to be energy efficient through Green Energy. Of course, in meeting some of the requirements for different types of Leadership in Energy and Environmental Design (LEED) certification, certain minimum levels of energy efficiency practices must be met. One such level of energy efficiency, in particular, is reduction in the consumption of electrical energy in buildings. This thesis is a study of methods of reducing the consumption of electrical energy (measured in kW of electrical power) in the UNL Jorgensen Hall (JH) air handling unit 2 …


Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza Sep 2010

Stochastic Optimal Control In Nonlinear Systems, Celestin Nkundineza

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Stochastic control is an important area of research in engineering systems that undergo disturbances. Controlling individual states in such systems is critical. The present investigation is concerned with the application of the stochastic optimal control strategy developed by To (2010) and its implementation as well as providing computed results of linear and nonlinear systems under stationary and nonstationary random excitations. In the strategy the feedback matrix is designed based on the achievement of the objectives for individual states in the system through the application of the Lyapunov equation for the system. Each diagonal element in the gain or associated gain …