Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Silicon

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 18 of 18

Full-Text Articles in Mechanical Engineering

Characteristic Of The Dynamics Of Disorder In Crystalline And Amorphous Materials, Amir Behbahanian Dec 2021

Characteristic Of The Dynamics Of Disorder In Crystalline And Amorphous Materials, Amir Behbahanian

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This work provides the evidence to apply simulation methods that are applicable to systems with structural randomness to simulate crystalline materials at high temperatures. My work not only open the avenue to expand the simulation capability of materials but also provides insight to the physics of vibrations of atoms under different temperature and for different types of materials. I have also evaluated the reliability of Molecular Dynamics simulations at the frequency level and found that theses types of simulations, despite the previous belief, are reliable at low temperatures but up to a measurable frequency. In addition, the result of my …


Mechanical Strength Of Germanium Doped Low Oxygen Concentration Czochralski Silicon And The Effect Of Oxygen On Nitrogen Dissociation In Silicon, Junnan Wu Jan 2021

Mechanical Strength Of Germanium Doped Low Oxygen Concentration Czochralski Silicon And The Effect Of Oxygen On Nitrogen Dissociation In Silicon, Junnan Wu

McKelvey School of Engineering Theses & Dissertations

During the Czochralski growth of silicon, it is inevitable for oxygen to be incorporated into the silicon crystal from the quartz crucible. Interstitial oxygen improves the mechanical strength of silicon by pinning and locking dislocations, but also generates thermal donors during device processes, shifting the electrical resistivity. For silicon wafers used in radio frequency (RF) applications, it is important to ensure the high resistivity of the substrates for good RF characteristics. Therefore, the oxygen level in these high resistivity silicon wafers is kept very low (< 2.5 × 1017 atoms/cm3) by carefully controlling the Czochralski growth conditions, in order to reduce the thermal donor concentration to an acceptable level. Silicon on insulator (SOI) substrates made from high resistivity wafers have been widely used for RF applications. SOI manufacturing includes multiple high temperature thermal cycles (1000 – 1100 °C), during which the high resistivity wafers are prone to slip and warpage. Therefore, it is technologically important to recover some of the lost mechanical strength due to the lack of oxygen by introducing electrically inactive impurities to suppress the dislocation generation and mobility in silicon. Germanium (Ge) as an isovalent impurity is 4% larger in size and forms a solid solution with silicon in the entire concentration range. Previous works have shown Ge doping at high concentrations above 6 × 1019 atoms/cm3 increased mechanical strength of silicon with high oxygen concentration (~ 1 × 1018 atoms/cm3). In this work, we explore the effect of Ge doping (7 - 9 × 1019 atoms/cm3) on the mechanical strength of low oxygen concentration (< 2 × 1017 atoms/cm3) silicon, where the oxygen associated dislocation locking and pinning are very low. A mechanical bending test was used to study the average dislocation migration velocity and the critical shear stress of dislocations motion at 600 – 750 °C for Ge doped, nitrogen doped, and undoped low oxygen samples, as well as nitrogen doped float-zone and un-doped high oxygen concentration samples. Next, we fabricated SOI substrates using these high resistivity wafers and compared their slip generation rates and the slip-free epitaxial grow temperature windows after the high temperature thermal cycles (> 1000 °C). Our results indicate at lower temperature Ge doesn’t affect the dislocation mobility …


Characterization Of Flexible Hybrid Electronics Using Stretchable Silver Ink And Ultra-Thin Silicon Die, Joshua A. Ledgerwood Jun 2017

Characterization Of Flexible Hybrid Electronics Using Stretchable Silver Ink And Ultra-Thin Silicon Die, Joshua A. Ledgerwood

Master's Theses

Flexible Hybrid Electronics (FHEs) offer many advantages to the future of wearable technology. By combining the dynamic performance of conductive inks, and the functionality of ultra-thinned, traditional IC technology, new FHE devices allow for development of applications previously excluded by relying on a specific type of electronics technology.

The characterization and reliability analysis of stretchable conductive inks paired with ultra-thin silicon die in theµm range was conducted. A silver based ink designed to be stretchable was screen printed on a TPU substrate and cured using box oven, conveyor convection oven, and photonic curing processes. Reliability tests were conducted including a …


Quality Improvement In Drilling Silicon By Using Micro Laser Assisted Drilling, Barkin Bakir Jan 2017

Quality Improvement In Drilling Silicon By Using Micro Laser Assisted Drilling, Barkin Bakir

The Hilltop Review

The micro-laser assisted drilling (µ-LAD) of monocrystalline silicon (100), using a diamond cutting tool coupled with a laser, was tested in order to improve the cutting edge quality of a drilled samples. The laser beam is transmitted through an optically transparent diamond drill bit and focused precisely at the tool-workpiece interface, where the material is under high pressure induced by the diamond tool. The influence of the laser power on the quality and the inner surface finish of the drilled materials is investigated. Different laser powers were used to carry out the experiments. The experimental results indicated that the µ-LAD …


Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam Aug 2016

Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam

Open Access Dissertations

Silicon nanowires are promising building blocks for high-performance electronics and chemical/biological sensing devices due to their ultra-small body and high surface-to-volume ratios. However, the lack of the ability to assemble and position nanowires in a highly controlled manner still remains an obstacle to fully exploiting the substantial potential of nanowires. Here we demonstrate a one-step method to synthesize intrinsic and doped silicon nanowires for device applications. Sub-diffraction limited nanowires as thin as 60 nm are synthesized using laser direct writing in combination with chemical vapor deposition, which has the advantages of in-situ doping, catalyst-free growth, and precise control of position, …


High-Throughput Mechanical Characterization Methods For Composite Electrodes And In-Situ Analysis Of Li-Ion Batteries, Luize Scalco De Vasconcelos Aug 2016

High-Throughput Mechanical Characterization Methods For Composite Electrodes And In-Situ Analysis Of Li-Ion Batteries, Luize Scalco De Vasconcelos

Open Access Theses

Electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituents often have large variation in their mechanical properties, making the characterization process a challenging task. In addition, the mechanical properties and mechanical behaviors of electrodes are closely coupled with the electrochemical processes of lithium insertion and extraction. There is an urgent need to develop an experimental platform to characterize the chemomechanical response of electrodes under the in-situ conditions of charge and discharge.

In the first part of this thesis, instrumented grid indentation is employed to determine the elastic modulus and hardness of the constituent phases of a composite cathode. …


Design And Optimization Of Lithium Ion Battery For High Temperature Applications, Khalid Abdullitife Ababtain Jan 2016

Design And Optimization Of Lithium Ion Battery For High Temperature Applications, Khalid Abdullitife Ababtain

Wayne State University Dissertations

With massive commercial success of lithium ion batteries, the ability to operate at

and above 70 °C still a crucial issue and a safety concern to combat ever-increasing

global warming and to extend applications beyond portable electronics. Among various

components of battery, anode and electrolyte and the passivation layer formed between

them is crucial towards the development of Li-ion batteries for extendable temperature

range. In this regard, room temperature ionic liquids (RTILs) have the capability to

tackle thermal stability issues of lithium ion batteries but their poor compatibility with

traditional graphite anodes limits their practical application. Towards addressing this

issue, …


Heat Transfer Analysis Of Slot Jet Impingement Onto Roughened Surfaces, Rashid Ali Alshatti Nov 2015

Heat Transfer Analysis Of Slot Jet Impingement Onto Roughened Surfaces, Rashid Ali Alshatti

USF Tampa Graduate Theses and Dissertations

The effect of surface roughness on jet impingement heat transfer was investigated in this research. A numerical analysis was conducted for free surface slot jet impinging normally onto a heated plate. Six different geometries and three different plate materials were investigated. The cooling fluid used for the analysis was water, and the flow was laminar with a range of Reynolds number (Re) from 500 to 1000. Temperature distribution, local and average heat transfer coefficient, and local and average Nusselt number were presented for each case.

The steady state heat transfer results show that the increase in Reynolds number (Re) increases …


Observation Of Tunneling Effects In Lateral Nanowire Pn Junctions, Sri Purwiyanti, Arief Udhiarto, Daniel Moraru, Takeshi Mizuno, Djoko Hartanto, Michiharu Tabe Aug 2014

Observation Of Tunneling Effects In Lateral Nanowire Pn Junctions, Sri Purwiyanti, Arief Udhiarto, Daniel Moraru, Takeshi Mizuno, Djoko Hartanto, Michiharu Tabe

Makara Journal of Technology

As electronic device dimensions are continuously reduced, applied bias conditions significantly change and the transport mechanisms must be reconsidered. Tunneling devices are promising for scaled-down electronics because of expected high-speed operation and relatively low bias. In this work, we investigated the tunneling features in silicon-oninsulator lateral nanowire pn junction and pin junction devices. By controlling the substrate voltage, tunneling features can be observed in the electrical characteristics. We found that the minimum substrate voltage required for tunneling to occur in pn junctions is higher as compared with pin junctions. The main cause of these effects relies in the difference between …


Bi-Directional Variable Stiffness Magnetorheological Elastomer (Mre) Design, Sarah S. Trabia May 2014

Bi-Directional Variable Stiffness Magnetorheological Elastomer (Mre) Design, Sarah S. Trabia

College of Engineering: Graduate Celebration Programs

What is MRE?
•MRE is a semi-active silicon with embedded iron particles for variable stiffness changes under external magnetic flux

Research Objective
•Feasibility of using MRE as a haptic feedback device.
•Design a MRE device that can increase or decrease the stiffness.
•Design an effective way of providing a “pre-strain” to the base silicon material.

Computational Simulation
•COMSOL 4.3b Finite Element Analysis
•2D axisymmetric model
•Parametric sweep was run to find the amount of current needed to counteract the permanent magnet.


Metal-Assisted Etching Of Silicon Molds For Electroforming, Ralu Divan, Dan Rosenthal '14, Karim Ogando, Leonidas E. Ocola, Daniel Rosenmann, Nicolaie Moldovan Sep 2013

Metal-Assisted Etching Of Silicon Molds For Electroforming, Ralu Divan, Dan Rosenthal '14, Karim Ogando, Leonidas E. Ocola, Daniel Rosenmann, Nicolaie Moldovan

Student Publications & Research

Ordered arrays of high-aspect-ratio micro/nanostructures in semiconductors stirred a huge scientific interest due to their unique one-dimensional physical morphology and the associated electrical, mechanical, chemical, optoelectronic, and thermal properties. Metal-assisted chemical etching enables fabrication of such high aspect ratio Si nanostructures with controlled diameter, shape, length, and packing density, but suffers from structure deformation and shape inconsistency due to uncontrolled migration of noble metal structures during etching. Hereby the authors prove that a Ti adhesion layer helps in stabilizing gold structures, preventing their migration on the wafer surface while not impeding the etching. Based on this finding, the authors demonstrate …


Continuous Electrowetting In Passivating And Non-Passivating Systems, Mehdi Khodayari Jan 2013

Continuous Electrowetting In Passivating And Non-Passivating Systems, Mehdi Khodayari

USF Tampa Graduate Theses and Dissertations

Electrowetting is an electromechanical response that can be used to change the equilibrium

shape of droplets on a surface through the application of an electric potential. By applying this potential asymmetrically to a droplet, the droplet can be moved. Typical electrowetting devices use an electrode covered by a dielectric to reduce electrochemical interactions. Successful electrowetting requires electrodes and dielectric layers that can resist damage through many cycles of voltage.

Continuous Electrowetting (CEW) is performed on high resistivity silicon wafers. In this process, when an electric potential difference is applied between the substrate ends, the droplet on the substrate moves towards …


Silicon Wafer Temperature Distribution, Daniel Gonzalez, Nathan Jones, Dylan Justice Nov 2012

Silicon Wafer Temperature Distribution, Daniel Gonzalez, Nathan Jones, Dylan Justice

Mechanical Engineering

Applied Materials is a global company that designs equipment for use in the semiconductor manufacturing industry. The scope of this project covers process chambers used for depositing thin chemical films onto silicon wafers. These processes must take place in particularly specific environments– including extremely low pressures and high temperatures. One challenge engineers face when designing these processes is carefully controlling the thermal behavior of silicon wafers. Typically, behavior is predicted using time consuming and computationally expensive CFD simulations. We have been asked to address this issue with a simpler, faster model which will allow engineers to reduce the total number …


Die Attach Properties Of Zn-Al-Mg-Ga Based High-Temperature Lead-Free Solder On Cu Lead-Frame Jan 2012

Die Attach Properties Of Zn-Al-Mg-Ga Based High-Temperature Lead-Free Solder On Cu Lead-Frame

A.S. Md Abdul Haseeb

No abstract provided.


The Composition And Distribution Of Coal-Ash Deposits Under Reducing And Oxidizing Conditions From A Suite Of Eight Coals, David R. Brunner Apr 2011

The Composition And Distribution Of Coal-Ash Deposits Under Reducing And Oxidizing Conditions From A Suite Of Eight Coals, David R. Brunner

Theses and Dissertations

Eighteen elements, including: carbon, oxygen, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, potassium, calcium, titanium, chromium, manganese, iron, nickel, strontium, and barium were measured using a scanning electron microscope with energy dispersive spectroscopy from deposits. The deposits were collected by burning eight different coals in a 160 kWth, staged, down-fired, swirl-stabilized combustor. Both up-stream and down-stream deposits from an oxidizing region (equivalence ratio 0.86) and reducing region (equivalence ratio 1.15) were collected. Within the deposits, the particle size and morphology were studied. The average particle cross-sectional area from the up-stream deposits ranged from 10 - 75 µm2 and had a …


Long Term Outdoor Testing Of Low Concentration Solar Modules, Lewis Fraas, James Avery, Leonid Minkin, H. X. Huang, Tim Hebrink, Robert F. Boehm Apr 2011

Long Term Outdoor Testing Of Low Concentration Solar Modules, Lewis Fraas, James Avery, Leonid Minkin, H. X. Huang, Tim Hebrink, Robert F. Boehm

Mechanical Engineering Faculty Research

A 1‐axis carousel tracker equipped with four 3‐sun low‐concentration mirror modules has now been under test outdoors at the University of Nevada in Las Vegas (UNLV) for three years. There are three unique features associated with this unit. First, simple linear mirrors are used to reduce the amount of expensive single crystal silicon in order to potentially lower the module cost while potentially maintaining cell efficiencies over 20% and high module efficiency. Simple linear mirrors also allow the use of a single axis tracker. Second, the azimuth carousel tracker is also unique allowing trackers to be used on commercial building …


Piezoelectric In Situ Transmission Electron Microscopy Technique For Direct Observations Of Fatigue Damage Accumulation In Constrained Metallic Thin Films, Xiaoli Tan, T. Du, J.K. Shang Jan 2002

Piezoelectric In Situ Transmission Electron Microscopy Technique For Direct Observations Of Fatigue Damage Accumulation In Constrained Metallic Thin Films, Xiaoli Tan, T. Du, J.K. Shang

Xiaoli Tan

A piezoelectricin situtransmission electron microscopy(TEM) technique has been developed to observe the damage mechanism in constrained metallic thin films under cyclic loading. The technique was based on the piezoelectric actuation of a multilayered structure in which a metallic thin film was sandwiched between a piezoelectric actuator and a silicon substrate. An alternating electric field with a static offset was applied on the piezoelectric actuator to drive the crack growth in the thin metallic layer while the sample was imaged in TEM. The technique was demonstrated on solder thin films where cavitation was found to be the dominant fatigue damage mechanism.


Characterization Of The Near-Interface Region Of Chemical Vapor Deposited Diamond Films On Silicon By Backscatter Kikuchi Diffraction, Brent L. Adams, K. Kunze, S. Geier, R. Hessmer, M. Schreck, B. Rauschembach, B. Stritzker Oct 1994

Characterization Of The Near-Interface Region Of Chemical Vapor Deposited Diamond Films On Silicon By Backscatter Kikuchi Diffraction, Brent L. Adams, K. Kunze, S. Geier, R. Hessmer, M. Schreck, B. Rauschembach, B. Stritzker

Faculty Publications

The lattice orientations near the interface of chemical vapor deposited diamond films on Si(001) have been studied by orientation imaging microscopy. This technique is based on the automated analysis of electron backscatter Kikuchi diffraction patterns. The electron beam has been scanned in discrete steps over the reverse side of the diamond film after having removed the substrate. The obtained data have allowed us to determine the texture and to visualize quantitatively the orientational arrangement of and among individual diamond crystallites in the near-interface region. A comparison with the orientation of the substrate has proved the existence of epitaxially nucleated grains. …