Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

Design, Control, And Optimization Of Robots With Advanced Energy Regenerative Drive Systems, Poya Khalaf Jan 2019

Design, Control, And Optimization Of Robots With Advanced Energy Regenerative Drive Systems, Poya Khalaf

ETD Archive

We investigate the control and optimization of robots with ultracapacitor based regenerative drive systems. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use ultracapacitors for energy storage. An electrical interconnection known as the star configuration is considered for the regenerative drives that allows for direct electric energy redistribution among joints, and enables higher energy utilization efficiencies. A semi-active virtual control strategy is used to achieve control objectives. We find closed-form expressions for the optimal robot and actuator parameters (link lengths, gear ratios, …


Improved Wind Turbine Control Strategies For Maximizing Power Output And Minimizing Power Flicker, Quan Chen May 2014

Improved Wind Turbine Control Strategies For Maximizing Power Output And Minimizing Power Flicker, Quan Chen

Theses and Dissertations

For reducing the cost of energy (COE) for wind power, controls techniques are important for enhancing energy yield, reducing structural load and improving power quality. This thesis presents the control strategies studies for wind turbine both from the perspectives of both maximizing power output and reducing power flicker and structural load,

First, a self-optimizing robust control scheme is developed with the objective of maximizing the power output of a variable speed wind turbine with doubly-fed induction generator (DFIG) operated in Region 2. Wind power generation can be divided into two stages: conversion from aerodynamic power to rotor (mechanical) power and …


Adaptive And Robust Braking-Traction Control Systems, John Adcox May 2014

Adaptive And Robust Braking-Traction Control Systems, John Adcox

All Dissertations

The designs of commercial Anti-Lock Braking Systems often rely on assumptions of a torsionally rigid tire-wheel system and heavily rely on hub-mounted wheel speed sensors to manage tire-road slip conditions. However, advancements in high-bandwidth braking systems, in-wheel motors, variations in tire/wheel designs, and loss of inflation pressure, have produced scenarios where the tire's torsional dynamics could be easily excited by the braking system actuator. In these scenarios, the slip conditions for the tire-belt/ring will be dynamically different from what can be inferred from the wheel speed sensors. This dissertation investigates the interaction of tire torsional dynamics with ABS & traction …


A Model-Free Approach To Vehicle Stability Control, Chinmay Pandit May 2013

A Model-Free Approach To Vehicle Stability Control, Chinmay Pandit

All Theses

This project explored the feasibility of using measured responses of a passenger car together with a fuzzy logic based control algorithm to sense the onset of under-steer (or loss of steering control) and mitigate or eliminate it. The controller is simple and robust and, unlike existing controllers, instead of comparing the vehicle response to that of an idealized model it makes decisions based solely upon the measured response of the car.
Simulations were conducted (using CarSim) of various vehicles executing the skid pad and the double lane change tests to characterize the vehicle behavior. Consistent and qualitatively similar patterns in …


Robust Region Tracking In Multi-Agent Systems Utilizing Sliding Mode Control: Theory And Applications, Mark Bacon Jan 2011

Robust Region Tracking In Multi-Agent Systems Utilizing Sliding Mode Control: Theory And Applications, Mark Bacon

Master's Theses

This thesis presents a methodology to bring controlled agents within a moving region despite agent interaction dynamics, uncertain forces and parameter variation. The logic is derived from traditional Sliding Mode Control theory with an expanded boundary layer which allows position deviation from the region center to specified bounds. As an example of the utility of this control, multiple methods of herding (controlling passive agents by appropriate positioning of controlled agents) are presented.


Robust/Optimal Temperature Profile Control Of A High-Speed Aerospace Vehicle Using Neural Networks, Vivek Yadav, Radhakant Padhi, S. N. Balakrishnan Jan 2007

Robust/Optimal Temperature Profile Control Of A High-Speed Aerospace Vehicle Using Neural Networks, Vivek Yadav, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. a 1-D distributed parameter model of a fin is developed from basic thermal physics principles. ldquoSnapshotrdquo solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the ldquoproper orthogonal decompositionrdquo (POD) technique and the snapshot solutions. a low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. an ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a …


Robust State Dependent Riccati Equation Based Guidance Laws, S. N. Balakrishnan, Ming Xin Jan 2001

Robust State Dependent Riccati Equation Based Guidance Laws, S. N. Balakrishnan, Ming Xin

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A robust state dependent Riccati equation based guidance/control is investigated in this study. In order to have a better design tool in terms of required interceptor accelerations, the target intercept geometry is formulated in a set of polar coordinates. With this formulation, we formulate a cost function with state dependent weights. In this study, we investigate the effects of such cost functions on the levels of interceptor accelerations. We also synthesize a neural network based extra controller to achieve the robustness in the presence of the target acceleration. In this manner, we will not need target acceleration estimation explicitly in …


Robust State Dependent Riccati Equation Based Robot Manipulator Control, Ming Xin, S. N. Balakrishnan, Zhongwu Huang Jan 2001

Robust State Dependent Riccati Equation Based Robot Manipulator Control, Ming Xin, S. N. Balakrishnan, Zhongwu Huang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We present a new optimal control approach to robust control of robot manipulators in the framework of state dependent Riccati equation (SDRE) technique. To treat this highly nonlinear control system, we formulate it as a nonlinear optimal regulator problem. SDRE technique was used to synthesize an optimal controller to this class of robot control problem. We also synthesize a neural network based extra controller to achieve the robustness in the presence of the parameter uncertainties. A typical two-link robot position control problem was studied to show the effectiveness of SDRE approach and robust extra control design to robotic application.


Robust Adaptive Critic Based Neurocontrollers For Systems With Input Uncertainties, S. N. Balakrishnan, Zhongwu Huang Jan 2000

Robust Adaptive Critic Based Neurocontrollers For Systems With Input Uncertainties, S. N. Balakrishnan, Zhongwu Huang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A two-neural network approach to solving optimal control problems is described in this study. This approach called the adaptive critic method consists of two neural networks: one is called the supervisor or critic, and the other is called an action network or controller. The inputs to both these networks are the current states of the system to be controlled. Each network is trained through an output of the other network and the conditions for optimal control. When their outputs are mutually consistent, the controller network output is optimal. The optimality is limited to the underlying model. Hence, we develop a …


Robustness Analysis Of Hopfield And Modified Hopfield Neural Networks In Time Domain, Jie Shen, S. N. Balakrishnan Jan 1998

Robustness Analysis Of Hopfield And Modified Hopfield Neural Networks In Time Domain, Jie Shen, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A variant of the Hopfield network, called the modified Hopfield network is formulated. This network which consists of two mutually recurrent networks has more free parameters than the well-known Hopfield network. Stability analysis of this network is presented. The analysis is carried out in the time domain with an application of the Lyapunov method and robust control Lyapunov function. The current flow in the network is treated as a "control". This "controller" is shown to guarantee "a practically stabilizing control". Analysis of the Hopfield network is also included for completion.


System Modeling And Control Of Smart Structures, Frank J. Kern, Leslie Robert Koval, K. Chandrashekhara, Vittal S. Rao Jan 1995

System Modeling And Control Of Smart Structures, Frank J. Kern, Leslie Robert Koval, K. Chandrashekhara, Vittal S. Rao

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents multidisciplinary research and curriculum efforts at the University of Missouri-Rolla in the smart structures area. The primary objective of our project is to integrate research results with curriculum development for the benefit of students in electrical, and mechanical and aerospace engineering and engineering mechanics. The approach to the accomplishment of curriculum objectives is the development of a two-course sequence in the smart structures area with an integrated laboratory. The research portion of the project addresses structural identification and robust control methods for smart structures. A brief summary of the research results and a description of curriculum development …