Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Unsupervised-Learning Assisted Artificial Neural Network For Optimization, Varun Kote Jul 2019

Unsupervised-Learning Assisted Artificial Neural Network For Optimization, Varun Kote

Mechanical & Aerospace Engineering Theses & Dissertations

Innovations in computer technology made way for Computational Fluid Dynamics (CFD) into engineering, which supported the development of new designs by reducing the cost and time by lowering the dependency on experimentation. There is a further need to make the process of development more efficient. One such technology is Artificial Intelligence. In this thesis, we explore the application of Artificial Intelligence (AI) in CFD and how it can improve the process of development.

AI is used as a buzz word for the mechanism which can learn by itself and make the decision accordingly. Machine learning (ML) is a subset of …


Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin Apr 2019

Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin

Mechanical & Aerospace Engineering Theses & Dissertations

In recent history, there has been a rapid rise in the use of drones, and they are expanding in popularity each year. The widespread use and future capabilities of these unmanned aerial vehicles (UAVs) will call for increased study and classification of propellers to maximize their performance. As a result, it is necessary to have continuity in the development, maximization, and optimization of propeller test stand’s capability to collect accurate and precise measurements. It is of significant advantage to have the capability of accurately characterizing a propeller based on its thrust and torque. In this study, a propeller test stand …


Electrical Response Of Thermoelectric Generator To Geometry Variation Under Transient Thermal Boundary Condition, Elias Yazdanshenas, Alireza Rezania, Meysam Karami Rad, Lasse Rosendahl Jan 2018

Electrical Response Of Thermoelectric Generator To Geometry Variation Under Transient Thermal Boundary Condition, Elias Yazdanshenas, Alireza Rezania, Meysam Karami Rad, Lasse Rosendahl

Mechanical & Aerospace Engineering Faculty Publications

A three-dimensional numerical model is applied in this study to illustrate the electrical response of a thermoelectric generator (TEG) during transient heat flux at the hot side. In this work, various types of thermal boundary conditions are considered to evaluate the performance of the TEG. Thus, a TEG under pulsed heat flux is studied numerically, and the numerical model is verified by experimental results. With the consideration of a defined reference geometry, different heat flux frequencies are applied in order to evaluate the corresponding electrical output by the TEG. In addition, variation of the module performance for various TEG leg …


A Monolithic Internal Strain-Gage Balance Design Based On Design For Manufacturability, Thomas Ladson Webb Iii Jan 2018

A Monolithic Internal Strain-Gage Balance Design Based On Design For Manufacturability, Thomas Ladson Webb Iii

Mechanical & Aerospace Engineering Theses & Dissertations

This paper proposes an alternative approach to internal strain-gage balance design driven by Design for Manufacturability (DFM) principles. The objective of this research was a reduction in fabrication time and, subsequently, cost of a balance by simplifying its design while maintaining basic stiffness and sensitivity. Traditionally, the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) balance designs have relied on Electro-Discharge Machining (EDM), which is a precise but slow and, therefore, expensive process. EDM is chosen due to several factors, including material hardness, surface finish, and complex geometry, including blind cuts. The new balance design objectives require no …


Development Of An Analysis And Design Optimization Framework For Marine Propellers, Ashish C. Tamhane Apr 2017

Development Of An Analysis And Design Optimization Framework For Marine Propellers, Ashish C. Tamhane

Mechanical & Aerospace Engineering Theses & Dissertations

In this thesis, a framework for the analysis and design optimization of ship propellers is developed. This framework can be utilized as an efficient synthesis tool in order to determine the main geometric characteristics of the propeller but also to provide the designer with the capability to optimize the shape of the blade sections based on their specific criteria.

A hybrid lifting-line method with lifting-surface corrections to account for the three-dimensional flow effects has been developed. The prediction of the correction factors is achieved using Artificial Neural Networks and Support Vector Regression. This approach results in increased approximation accuracy compared …


Design Optimization Module For Hierarchical Research And Learning Environment, Oktay Baysal, Mehti Koklu, Ahmed K. Noor Jan 2004

Design Optimization Module For Hierarchical Research And Learning Environment, Oktay Baysal, Mehti Koklu, Ahmed K. Noor

Mechanical & Aerospace Engineering Faculty Publications

The present paper describes a learning module on design optimization courses within a hierarchical research and learning network (HRLN). In this environment a knowledge organization can be created as a hierarchical learning network to link diverse inter- and trans- disciplinary teams from a consortium of universities, industry, government agencies and the providers of learning technologies. It is an approach that builds on computer-based training, intelligent tutoring systems, interactive learning, collaborative-distributed learning, and learning networks. The present design optimization module has been developed and described herein, as a demonstrator of a learning module in this environment. This module allows for the …


Shape Sensitivity Analysis And Optimization Of Skeletal Structures And Geometrically Nonlinear Solids, Ching-Hung Chuang Apr 1992

Shape Sensitivity Analysis And Optimization Of Skeletal Structures And Geometrically Nonlinear Solids, Ching-Hung Chuang

Mechanical & Aerospace Engineering Theses & Dissertations

Formulations and computational schemes for shape design sensitivity analysis and optimization have been developed for both skeletal structures and geometrically nonlinear elastic solids. The continuum approach, which is based on the weak variational form of the governing differential equation and the concept of the material derivative, plays a central role in such a development.

In the first part of this work, the eigenvalue and eigenvector sensitivity equations for skeletal structures are derived with respect to configuration variables of joint and support locations. This derivation is done by the domain method as well as the boundary method. The discrete approach for …


Optimal Control Of A Large Space Telescope Using An Annular Momentum Control Device, Arun Anant Nadkarni Jul 1977

Optimal Control Of A Large Space Telescope Using An Annular Momentum Control Device, Arun Anant Nadkarni

Mechanical & Aerospace Engineering Theses & Dissertations

Application of a new development in the field of momentum storage devices, the Annular Momentum Control Device (AMCD), to the twin problems of large angle maneuvers and fine pointing control is considered. The basic concept of the AMCD consists of a spinning rim, with no central hub area, suspended by a minimum of three magnetic bearings, and driven by a noncontacting electromagnetic spin motor. The dissertation considers in detail the design of an optimal controller to achieve both large angle maneuvers and the fine pointing control of a Large Telescope (LST) with a single configuration, consisting of a single AMCD …