Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Effect Of Junction Geometry On Monodispersed Microdroplet Generation In Microfluidic Aqueous Two-Phase Systems, Young Gyu Nam Aug 2014

Effect Of Junction Geometry On Monodispersed Microdroplet Generation In Microfluidic Aqueous Two-Phase Systems, Young Gyu Nam

Theses and Dissertations

Aqueous two-phase system (ATPS) consists of two immiscible water-based solutions of polymers, which can form phase partitioning. Dextran and polyethylene glycol I used in this thesis is the one of common components of aqueous two-phase system give a reliable and incompatible environment for purification of biomedical products and cellular macromolecules. Recently, ATPS have received increasing attention as a separation method in microfluidic device due to the advantages of biocompatibility, unlimited combination, and low interfacial tension. Hence, it became an important to discover researches related to ATPS microfluidic device.

Microdroplets produced in microfluidic device are a largely interesting phenomenon for various …


Electrokinetic Particle Manipulations In Spiral Microchannels, John Dubose May 2014

Electrokinetic Particle Manipulations In Spiral Microchannels, John Dubose

All Theses

Recent developments in the field of microfluidics have created a multitude of new useful techniques for practical particle and cellular assays. Among them is the use of dielectrophoretic forces in 'lab-on-a-chip' devices. This sub-domain of electrokinetic flow is particularly popular due to its advantages in simplicity and versatility. This thesis makes use of dielectrophoretic particle manipulations in three distinct spiral microchannels. In the first of these experiments, we demonstrate the utility of a novel single-spiral curved microchannel with a single inlet reservoir and a single outlet reservoir for the continuous focusing and filtration of particles. The insulator-based negative-dielectrophoretic (repulsive) force …


Development Of Confocal Imaging Techniques For Probing Interfacial Dynamics In Microscale, Gas-Liquid, Two-Phase Flow, Joseph E. Hernandez Jan 2014

Development Of Confocal Imaging Techniques For Probing Interfacial Dynamics In Microscale, Gas-Liquid, Two-Phase Flow, Joseph E. Hernandez

Dissertations, Master's Theses and Master's Reports - Open

Micro-scale, two-phase flow is found in a variety of devices such as Lab-on-a-chip, bio-chips, micro-heat exchangers, and fuel cells. Knowledge of the fluid behavior near the dynamic gas-liquid interface is required for developing accurate predictive models. Light is distorted near a curved gas-liquid interface preventing accurate measurement of interfacial shape and internal liquid velocities. This research focused on the development of experimental methods designed to isolate and probe dynamic liquid films and measure velocity fields near a moving gas-liquid interface. A high-speed, reflectance, swept-field confocal (RSFC) imaging system was developed for imaging near curved surfaces.

Experimental studies of dynamic gas-liquid …


A Parametric Investigation Of A Novel, Modular, Gasketless, Microfluidic Interconnect Using Parallel Superhydrophobic Surfaces, Christopher Ramsey Brown Jan 2014

A Parametric Investigation Of A Novel, Modular, Gasketless, Microfluidic Interconnect Using Parallel Superhydrophobic Surfaces, Christopher Ramsey Brown

LSU Master's Theses

The gasketless microfluidic interconnect has the potential to offer a standardized approach to interconnects between modular microfluidic components. This strategy uses parallel superhydrophobic surfaces (contact angle ≥ 150ᴼ) to passively seal adjacent, concentric, microfluidic ports separated by an air gap using a liquid bridge created between the chips. The parallel superhydrophobic surfaces do not require the addition of a gasket or other additional components so that the assembly process scales favorably with an increasing number of fluidic interconnects. The gasketless seal does not contribute to geometric constraint between the component chips which allows alignment between chips to scale favorably with …


There Can Be Turbulence In Microfluidics At Low Reynolds Number, Guiren Wang, F. Yang, Wei Zhao Jan 2014

There Can Be Turbulence In Microfluidics At Low Reynolds Number, Guiren Wang, F. Yang, Wei Zhao

Faculty Publications

Turbulence is commonly viewed as a type of macroflow, where the Reynolds number (Re) has to be sufficiently high. In microfluidics, when Re is below or on the order of 1 and fast mixing is required, so far only chaotic flow has been reported to enhance mixing based on previous publications since turbulence is believed not to be possible to generate in such a low Re microflow. There is even a lack of velocimeter that can measure turbulence in microchannels. In this work, we report a direct observation of the existence of turbulence in microfluidics with Re on the order …