Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Experimental And Numerical Analysis Of Laminar And Transitional Flow Through Annular Corrugated Pipes, Joseph Russell Sargent May 2024

Experimental And Numerical Analysis Of Laminar And Transitional Flow Through Annular Corrugated Pipes, Joseph Russell Sargent

Theses and Dissertations

This dissertation presents studies on pressure loss through annular corrugated pipes to determine a friction factor coefficient using nitrogen. Ten different corrugated pipes’ geometries were evaluated via testing and experimentation. The ratio of corrugation height to inner diameter varied from 0.233 to 0.333 and the ratio of corrugation pitch to inner diameter varied from 0.181 to 0.446. Nitrogen flow rates between 0.25 to 94.4 standard liters per minute were used, resulting in Reynolds numbers, based on the corrugated pipe inner diameter, from 100 to 23,000. The experimental set-up was validated using smooth-pipe pressure loss measurements and the derived friction factor …


Construction Of A Peridynamic Model For Viscous Flow, Jiangming Zhao, Adam Larios, Florin Bobaru Ph.D. Jan 2022

Construction Of A Peridynamic Model For Viscous Flow, Jiangming Zhao, Adam Larios, Florin Bobaru Ph.D.

Department of Mechanical and Materials Engineering: Faculty Publications

We derive the Eulerian formulation for a peridynamic (PD) model of Newtonian viscous flow starting from fundamental principles: conservation of mass and momentum. This formulation is different from models for viscous flow that utilize the so-called “peridynamic differential operator” with the classical Navier- Stokes equations. We show that the classical continuity equation is a limiting case of the PD one, assuming certain smoothness conditions. The PD model for viscous flow is calibrated to the classical Navier-Stokes equations by enforcing linear consistency for the viscous stress term. Couette and Poiseuille flows, and incompressible fluid flow past a regular lattice of cylinders …


Experiment And Computational Analysis On Effect Of Plasma Actuation Incompressible Flow Around Tandem Cylinders, Emmanuel C. Gabriel-Ohanu Jan 2019

Experiment And Computational Analysis On Effect Of Plasma Actuation Incompressible Flow Around Tandem Cylinders, Emmanuel C. Gabriel-Ohanu

Honors Undergraduate Theses

The utilization of steady state flow of air over tandem circular cylinders has several applications in engineering systems. Incompressible flow over circular cylinders in tandem at different spacing with and without plasma actuation on the leading cylinder will be investigated in this paper to understand the effects of plasma actuation on flow properties and wake region of the two cylinders in cross flow. The principal focus of the research is on the use of experimental and computational methods to study and provide valid results, the research will analyze the wake region, the effect of Reynolds number and the longitudinal spacing …


Turbulent Transition Simulation And Particulate Capture Modeling With An Incompressible Lattice Boltzmann Method, John R. Murdock Jan 2017

Turbulent Transition Simulation And Particulate Capture Modeling With An Incompressible Lattice Boltzmann Method, John R. Murdock

Dissertations, Master's Theses and Master's Reports

Derivation of an unambiguous incompressible form of the lattice Boltzmann equation is pursued in this dissertation. Further, parallelized implementation in developing application areas is researched. In order to achieve a unique incompressible form which clarifies the algorithm implementation, appropriate ansatzes are utilized. Through the Chapman-Enskog expansion, the exact incompressible Navier-Stokes equations are recovered. In initial studies, fundamental 2D and 3D canonical simulations are used to evaluate the validity and application, and test the required boundary condition modifications. Several unique advantages over the standard equation and alternative forms found in literature are found, including faster convergence, greater stability, and higher fidelity …


Lectures In Computational Fluid Dynamics Of Incompressible Flow: Mathematics, Algorithms And Implementations, James M. Mcdonough Jan 2007

Lectures In Computational Fluid Dynamics Of Incompressible Flow: Mathematics, Algorithms And Implementations, James M. Mcdonough

Mechanical Engineering Textbook Gallery

From Prologue:

The present lecture notes are written to emphasize the mathematics of the Navier–Stokes (N.–S.) equations of incompressible flow and the algorithms that have been developed over the past 30 years for solving them.