Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao Nov 2022

Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a model-driven feedforward control approach to mitigate thermal-induced flaw formation in laser powder bed fusion (LPBF) additive manufacturing process. The key idea was to avert heat buildup in a LPBF part before it is printed by adapting process parameters layer-by-layer based on insights from a physics-based thermal simulation model. The motivation being to replace cumbersome empirical build-and-test parameter optimization with a physics-guided strategy. The approach consisted of three steps: prediction, analysis, and correction. First, the temperature distribution of a part was predicted rapidly using a graph theory-based computational thermal model. Second, the model-derived thermal trends were …


Thermomechanical Modeling In Laser Powder Bed Fusion Additive Manufacturing Using Graph Theory: Application To Prediction Of Recoater Crash, Md Humaun Kobir Aug 2021

Thermomechanical Modeling In Laser Powder Bed Fusion Additive Manufacturing Using Graph Theory: Application To Prediction Of Recoater Crash, Md Humaun Kobir

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This work pertains to the laser powder bed fusion (LPBF) additive manufacturing process. The objective of this thesis is to predict a frequently occurring type of thermal-induced process failure in LPBF called recoater crash. To ascertain the likelihood of a recoater crash before the part is printed, we develop and apply a computationally efficient thermomechanical modeling approach based on graph theory.

Despite its demonstrated ability to overcome the design and processing constraints of conventional subtractive and formative manufacturing, the production-level scaleup of LPBF is hindered by frequent build failures. For example, the part often deforms as it is being printed …


Design Of Novel Charge Balancing Networks In Battery Packs, D. Dane Quinn, Tom Hartley Apr 2015

Design Of Novel Charge Balancing Networks In Battery Packs, D. Dane Quinn, Tom Hartley

Dr. D Dane Quinn

In a modern battery pack, the charge in the individual cells can diverge in time, leading to decreased capacity and reduced operating life of the pack. Charge balancing systems can be introduced to equalize the state of charge across the multiple cells, therefore increasing the performance of the battery pack. This work considers the dynamic performance of charge balancing systems, and through simulation explores how their ability to equalize the state of charge depends on the design of the underlying charge balancing network. The performance of the charge balancing system is described in terms of the rate at which the …


Quantification Of Ultraprecision Surface Morphology Using An Algebraic Graph Theoretic Approach, Prahalad Rao, Satish T. S. Bukkapatnam, Zhenyu (James) Kong, Omer F. Beyca, Kenneth Case, Ranga Komanduri Jan 2015

Quantification Of Ultraprecision Surface Morphology Using An Algebraic Graph Theoretic Approach, Prahalad Rao, Satish T. S. Bukkapatnam, Zhenyu (James) Kong, Omer F. Beyca, Kenneth Case, Ranga Komanduri

Department of Mechanical and Materials Engineering: Faculty Publications

Assessment of progressive, nano-scale variation of surface morphology during ultraprecision manufacturing processes, such as fine-abrasive polishing of semiconductor wafers, is a challenging proposition owing to limitations with traditional surface quantifiers. We present an algebraic graph theoretic approach that uses graph topological invariants for quantification of ultraprecision surface morphology. The graph theoretic approach captures heterogeneous multi-scaled aspects of surface morphology from optical micrographs, and is therefore valuable for in situ real-time assessment of surface quality. Extensive experimental investigations with specular finished (Sa ~ 5 nm) blanket copper wafers from a chemical mechanical planarization (CMP) process suggest that the proposed method was …


Modeling And Control Of Formations Of Nonholonomic Mobile Robots, Jaydev P. Desai, James P. Ostrowski, R. Vijay Kumar Jan 2008

Modeling And Control Of Formations Of Nonholonomic Mobile Robots, Jaydev P. Desai, James P. Ostrowski, R. Vijay Kumar

R. Vijay Kumar

This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory.We model the team as a triple, (g, r, H), consisting of a group element g that describes the gross position of the lead robot, a set of shape variables r that describe the relative positions of robots, and a control graph H that describes the behaviors of the robots in the formation. Our framework enables the representation and enumeration of possible control graphs and the coordination of transitions between …


Almost Global Asymptotic Formation Stabilization Using Navigation Functions, Amit Kumar, Herbert G. Tanner Oct 2004

Almost Global Asymptotic Formation Stabilization Using Navigation Functions, Amit Kumar, Herbert G. Tanner

Mechanical Engineering Faculty Publications

We present a navigation function through which a group of mobile agents can be coordinated to achieve a particular formation, both in terms of shape and orientation, while avoiding collisions between themselves and with obstacles in the environment. Convergence is global and complete, subject to the constraints of the navigation function methodology. Algebraic graph theoretic properties associated with the interconnection graph are shown to affect the shape of the navigation function. The approach is centralized but the potential function is constructed in a way that facilitates complete decentralization. The strategy presented will also serve as a point of reference and …


Kinematic Synthesis Of Deployable-Foldable Truss Structures Using Graph Theory, Dirk B. Warnaar Apr 1991

Kinematic Synthesis Of Deployable-Foldable Truss Structures Using Graph Theory, Dirk B. Warnaar

Mechanical & Aerospace Engineering Theses & Dissertations

A graph theoretic approach is applied to the conceptual design of deployable truss structures. The characteristics that relate to the inter-connectivity of the elements of a deployable truss structure can be captured in a schematic representation, called a graph. A procedure is presented that enables the exhaustive generation of these graphs for structures of any given number of nodes and links and which are foldable onto a plane or onto a line.

A special type of truss structures, called truss modules, is presented. Graphs of this class of structures form a subset of the graphs of truss structures. Two procedures …