Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Mechanical Engineering

Prove Primary Battery Structure, John D. Burkhart, Andy Mccormick, Ryan Yu, Soren Barclay Jun 2023

Prove Primary Battery Structure, John D. Burkhart, Andy Mccormick, Ryan Yu, Soren Barclay

Mechanical Engineering

In conjunction with Prototype Vehicle (PROVE) Laboratory, our group designed, manufactured, and tested a prototype structure to house the battery boxes for PROVE’s endurance vehicle. Our structure was designed to support the batteries during normal use, and in the event of a front crash. Our design is comprised of a secondary composite box to house the battery boxes, a bottom plate to affix the secondary box to the chassis floor, a horizontal plate fastened to the chassis, and a brace structure welded to the chassis. From the outset, we chose to use a secondary box, the primary battery boxes must …


An Integrated Design Tool For Tow-Steered Composite Laminate In Abaqus, Twinkle Kothari Dec 2022

An Integrated Design Tool For Tow-Steered Composite Laminate In Abaqus, Twinkle Kothari

Mechanical and Aerospace Engineering Theses

The material of choice for contemporary aircraft and its component design over the past few decades has shifted more and more toward fiber-reinforced composites. This is mainly due to the improved strength, lightweight, corrosion resistance, design flexibility, and durability of composites over traditional metals. Advanced tailorable composites such as tow-steered composites can be designed and fabricated with fibers following prescribed curvilinear paths, which provides improved mechanical performance compared with unidirectional fiber-reinforced composites (UDFRCs). However, the potential of tow-steered composites oftentimes fails to be exploited due to the lack of design tools. Currently, there are no commercially available design tools for …


Finite Element Model Of The Pediatric Hip Joint During The Barlow Maneuver, Christina M. Zlock Apr 2022

Finite Element Model Of The Pediatric Hip Joint During The Barlow Maneuver, Christina M. Zlock

Doctoral Dissertations and Master's Theses

Developmental Dysplasia of the Hip is the dysplasia or dislocation of an unstable femoral head in the acetabulum of the pelvis. This is a result of an abnormal or underdeveloped growth of the acetabulum and triradiate cartilages and/or an out of place and uncentered femoral head in the acetabulum. This underdevelopment, if not diagnosed and treated at an early age, may lead to abnormal and pain and osteoarthritis later in life. A common step in diagnosis is to perform a physical examination of the hip, one method is the Barlow maneuver.

The aim of the project is to use healthy …


Numerical And Experimental Study Of Machining Process Of High Strength Lightweight Materials, Chao Zhang Dec 2021

Numerical And Experimental Study Of Machining Process Of High Strength Lightweight Materials, Chao Zhang

All Dissertations

No abstract provided.


Buckling Load Optimization Of Variable Stiffness Composite Plate Using Fem And Semi-Analytical Method, Jeegar Vallabhbhai Patel Dec 2021

Buckling Load Optimization Of Variable Stiffness Composite Plate Using Fem And Semi-Analytical Method, Jeegar Vallabhbhai Patel

Mechanical and Aerospace Engineering Theses

The advent of new composite manufacturing techniques like Automated Fiber Placement (AFP) offers greater flexibility in structural designs by allowing curvilinear fiber paths. Hence, it is now possible to change laminate stiffness locally, thereby enabling Variable Stiffness (VS) composite structures. Such structures demonstrate superior buckling performance over traditional constant stiffness structures. However, obtaining the optimum fiber paths to improve buckling performance remains an open area of research due to the complexity of determining such fiber paths. This research investigated two approaches for optimizing fiber paths; First, a Finite Element Method (FEM) approach that utilizes linear shape functions to interpolate local …


Prediction Of Solder Joint Fatigue Life Of Photonic Package Using ?-? Materials, Ojas Tyagi Dec 2021

Prediction Of Solder Joint Fatigue Life Of Photonic Package Using ?-? Materials, Ojas Tyagi

Mechanical and Aerospace Engineering Theses

Fatigue life prediction has become very important factor in reliability of any electronic components to withstand extreme thermal stresses in industrial standard. Hence, photonic packages are widely used in telecommunication and computer applications. The primary focus of this study is to determine the thermal cycles to crack initiation of solder bump used in laser array waferboard for telecommunication applications. This includes GaAs Laser chip on waferboard and Si substrate with pure Indium solder balls in between. Indium has proved higher fatigue life in various experimental studies in the field of reliability and lead-free material. Therefore, a solder ball was designed …


Investigating A Finite Element Model Updating Methodology For Characterizing Mechanical Properties Of Ncf Composites, Pasworn Chanchai Aug 2021

Investigating A Finite Element Model Updating Methodology For Characterizing Mechanical Properties Of Ncf Composites, Pasworn Chanchai

Mechanical and Aerospace Engineering Theses

Composite materials have been a key breakthrough in developing aircraft structures. Their superior strength and stiffness-to-density ratio, which are unmatched by no other materials, allow engineers to create high strength and ultra-lightweight aircraft structures. Recently, non-Crimp Fabric (NCF) composites have emerged as attractive alternatives to traditional autoclave pre-impregnated composites allowing for lower production costs, better handling and improved shelf life while maintaining excellent in-plane mechanical properties compared to other types of textile composites. NCF out-of-plane mechanical properties can also be enhanced by stitching a high tensile strength yarn throughout their entire laminate thickness, improving the resistance to delamination. However, stitch-reinforced …


Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar Jan 2019

Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar

Mechanical Engineering ETDs

The addition of GridPro semi-structured, automated generation of grids for complex moving boundaries for combustion engine applications and the Menter Shear Stress Turbulent Transfer (SST) model are being developed by Los Alamos National Laboratory. The software is called Fast, Easy, Accurate, and Robust Continuum Engineering (FEARCE). In addition to improving the time and effort required to build complex grid geometry for turbulent reactive multi-phase flow in internal combustion engines, the SST turbulence model has been programmed into the Predictor Corrector Fractional-Step (PCS) Finite Element Method (FEM) for reactive flow and turbulent incompressible flow regime validation is performed. The Reynolds-Averaged Navier-Stokes …


Numerical Study Of Biopolymer Implants For Distal Femoral Condyles– Finite Element Simulations, Luke Olsen May 2018

Numerical Study Of Biopolymer Implants For Distal Femoral Condyles– Finite Element Simulations, Luke Olsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Approximately 12% of the adult population in the United States is affected by

Osteoarthritis (OA) [1, 2]. Because of this, OA is the considered the most chronic degenerative joint disease, and is subject to continuous research into treatment. OA mainly manifests itself by degrading the articular cartilage in joints, such as the knee, and can eventually lead to complete loss of cartilage and potentially bone damage, leading to pain and discomfort for the patient [3]. For severe OA, the most common treatment is total knee arthroplasty (TKA) [4]. This procedure includes removing portions of the femur and tibia, and replacing …


The Performance Of Quadrilateral Element With Rotational Degrees Of Freedom In Statics And Dynamics Analysis And Optimization, Xingzhi Wang May 2018

The Performance Of Quadrilateral Element With Rotational Degrees Of Freedom In Statics And Dynamics Analysis And Optimization, Xingzhi Wang

Mechanical and Aerospace Engineering Theses

Finite Element Method (FEM) is widely used in structural analysis, and the standard approach to increase the accuracy of analysis is increasing the total degrees of freedom (DOFs), namely, refine the mesh. By introducing the rotational DOFs, better accuracy can be achieved without change the mesh. The objective of this study was to investigate the performance of elements with rotational DOFs in statics and dynamics analysis and applying these elements to optimization. The implementation of three representative elements with rotational DOFs for statics analysis is reproduced. Also, this work implements these elements to dynamics analysis and optimization. The results show …


A Design Methodology For Continuous Fiber Additive Manufacturing Using Advanced Computer Aided Engineering Techniques, Nicholas Venter Dec 2017

A Design Methodology For Continuous Fiber Additive Manufacturing Using Advanced Computer Aided Engineering Techniques, Nicholas Venter

Mechanical and Aerospace Engineering Theses

A design methodology for Continuous Carbon Fiber Additive Manufacturing (CCFAM) developed using Computer Aided Engineering (CAE) techniques takes advantage of both the mechanical strength of composite materials and the Fused Filament Fabrication (FFF) method. By performing topology optimization and Finite Element Analysis (FEA) on a load-bearing part, engineers can design much lighter optimized parts that are just as strong as those produced using FFF. This weight reduction is achieved by relying on the mechanical strength of continuous carbon fibers printed alongside a traditional thermoplastic matrix. The FFF additive manufacturing method enables the production of complex shapes, which can match the …


Smartwalker – Rolling Walker Instrumentation And Data Acquisition System Development To Monitor, Visualize And Store Rolling Walker Usage Data, Mauricio Jaguan Nieves Dec 2016

Smartwalker – Rolling Walker Instrumentation And Data Acquisition System Development To Monitor, Visualize And Store Rolling Walker Usage Data, Mauricio Jaguan Nieves

Mechanical and Aerospace Engineering Theses

The Smart Walker project was designed to fill a necessity of monitoring in real time the use of rolling walkers (RW) and study the causes that contribute to the high rate of fallings among its users. The main objectives of the project were to measure the major forces applied by RW users in real time and store it safely for further analysis. The first prototype of the Smart Walker includes the measurement of axial load, torque and gripping force applied on the handle as well as acceleration and rotation angles while it is being used. The axial load was measured …


Mechanical Property Evaluation Of Magnesium Rich Primer Coating System Over Aa 2024 T-3 Aluminum Alloy By Nano-Inedntation, Hongyi Qu Aug 2016

Mechanical Property Evaluation Of Magnesium Rich Primer Coating System Over Aa 2024 T-3 Aluminum Alloy By Nano-Inedntation, Hongyi Qu

Mechanical and Aerospace Engineering Theses

Aluminum alloy is widely used as a major structural material, such as for wing and fuselage, in aerospace industry. Corrosion is the most insidious form of damage to aluminum alloy, which can cause aircraft structure damage and related safety issue. Coating is generally used in industry to protect metal structure. An alternative to present toxic chromium primer coating system, magnesium rich primer (MgRP) has been developed to protect AA 2024 T-3. Studies have demonstrated the anti-corrosion performance of MgRP. However, the interlayer material heterogeneity can affect the mechanical properties of coating such as modulus, hardness and interfacial behavior. In the …


Optimization Of Formula Sae Electric Vehicle Frame With Finite Element Analysis, Alexander Prorok Jan 2016

Optimization Of Formula Sae Electric Vehicle Frame With Finite Element Analysis, Alexander Prorok

Williams Honors College, Honors Research Projects

Optimization of Formula SAE Electric Vehicle Frame with Finite Element Analysis


Vortex Shedding Dynamics In Long Aspect-Ratio Aerodynamics Bodies, Liu Chen Jan 2012

Vortex Shedding Dynamics In Long Aspect-Ratio Aerodynamics Bodies, Liu Chen

Dissertations, Master's Theses and Master's Reports - Open

The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction …


Comparison Study Between Fem And Sem For Wave Propagation Models Applied To Solids, Shaddy Roberto Castillo Ponton Jan 2012

Comparison Study Between Fem And Sem For Wave Propagation Models Applied To Solids, Shaddy Roberto Castillo Ponton

Open Access Theses & Dissertations

Wave propagation is a field whose application has spread across many disciplines. In the field of structural engineering, wave propagation methods have focused their attention specifically in the area of structural health monitoring and active control of vibrations and noise. Likewise, the development of new methods and their application have been successful in the area of material science with a special emphasis on the field of structural integrity evaluation of anisotropic and inhomogeneous structures (laminated composite structures). The current available analysis tools are inadequate to handle the modeling of complex structures. One-dimensional wave propagation problems in solids are still a …


Micromechanical Simulation For Fatigue Damage Incubation, Tong Li May 2011

Micromechanical Simulation For Fatigue Damage Incubation, Tong Li

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Micromechanical simulations are conducted to quantify the influence of microstructure attributes to the formation of small fatigue cracks. Three wrought aluminum alloys (7075-T651, 2024-T3, virtual material) with fractured particle are studied to quantify the influence of material’s yield strength and ultimate strength to material’s fatigue resistance. Laser Engineered Net Shaping (LENS) material with pores of various spatial distribution and particles are simulated for the microplasticity and its effects on fatigue incubation.

A cohesive zone model is used to study the interface cohesive behavior’s influence to the cyclic driving mechanisms. Different simulations based on different interfacial crack geometries and particle shapes …


Structural Health Monitoring With Piezoelectric Wafer Active Sensors--Predictive Modeling And Simulation, Victor Giurgiutiu Jan 2010

Structural Health Monitoring With Piezoelectric Wafer Active Sensors--Predictive Modeling And Simulation, Victor Giurgiutiu

Faculty Publications

This paper starts a review of the state of the art in structural health monitoring with piezoelectric wafer active sensors and follows with highlighting the limitations of the current approaches which are predominantly experimental. Subsequently, the paper examines the needs for developing a predictive modeling methodology that would allow to perform extensive parameter studies to determine the sensing method’s sensitivity to damage and insensitivity to confounding factors such as environmental changes, vibrations, and structural manufacturing variability. The thesis is made that such a predictive methodology should be multi-scale and multi-domain, thus encompassing the modeling of structure, sensors, electronics, and power …


Structural Health Monitoring With Piezoelectric Wafer Active Sensors—Predictive Modeling And Simulation, Victor Giurgiutiu Jan 2010

Structural Health Monitoring With Piezoelectric Wafer Active Sensors—Predictive Modeling And Simulation, Victor Giurgiutiu

Faculty Publications

This paper starts a review of the state of the art in structural health monitoring with piezoelectric wafer active sensors and follows with highlighting the limitations of the current approaches which are predominantly experimental. Subsequently, the paper examines the needs for developing a predictive modeling methodology that would allow to perform extensive parameter studies to determine the sensing method’s sensitivity to damage and insensitivity to confounding factors such as environmental changes, vibrations, and structural manufacturing variability. The thesis is made that such a predictive methodology should be multi-scale and multi-domain, thus encompassing the modeling of structure, sensors, electronics, and power …