Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Convection

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 19 of 19

Full-Text Articles in Mechanical Engineering

Patterned Heating Induced Propulsion, Saajid A. Aman Nov 2023

Patterned Heating Induced Propulsion, Saajid A. Aman

Electronic Thesis and Dissertation Repository

This study explores propulsion effects generated by patterned heating acting on smooth and corrugated surfaces. The model problem assumes that the upper plate moves freely, and the lower plate is stationary, equipped with grooves, and exposed to spatially distributed heating. Our findings identify two distinct propulsion effects: thermal streaming and thermal drift. Thermal streaming occurs when given sufficient heating intensity with net flow in the left or right direction characterized by a pitchfork bifurcation. The efficiency of this technique can be controlled using the wavelength of heating. Thermal drift represents a pattern interaction effect. Its strength depends on the relative …


Determining Thermal Properties Via Parameter Estimation Of A One-Dimensional, Analytical Model, Lauren B. Tomanek Jan 2022

Determining Thermal Properties Via Parameter Estimation Of A One-Dimensional, Analytical Model, Lauren B. Tomanek

Doctoral Dissertations

“In thermal applications, thermal conductivity is used to predict how well a material conducts heat. The accuracy of the magnitude of the thermal conductivity becomes increasingly essential to optimize part geometry. Thermal conductivity can vary significantly from the nominal value due to post-processing. The ASTM standards available to measure thermal conductivity are challenging to reproduce because of the insulated and prescribed temperature boundary conditions that are needed. The research introduces two new methods for estimating thermal conductivity that deliver the same accuracy as the existing ASTM standards and are easier to implement. The methods account for losses in the heating …


Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin Nov 2021

Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin

Physics & Astronomy Faculty Research

The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we …


Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Jun 2018

Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This work experimentally studies the effects of single wall heating on laminar flow in a high-aspect ratio superhydrophobic microchannel. When water that is saturated with air is used as the working liquid, the non-wetted cavities on the superhydrophobic surfaces act as nucleation sites and allow air to effervesce out of the water and onto the surface when heated. Previous works in the literature have only considered the opposite case where the water is undersaturated and absorbs air out the cavities for a microchannel setting. The microchannel considered in this work consists of a rib/cavity structured superhydrophobic surface and a glass …


Numerical Analysis Of An Electrical Transformer With Fins And Horizontal Pins, Sean Ferneyhough May 2018

Numerical Analysis Of An Electrical Transformer With Fins And Horizontal Pins, Sean Ferneyhough

UNLV Theses, Dissertations, Professional Papers, and Capstones

Three-dimensional numerical simulations are run on a cylindrical electrical transformer that is generating heat in order to study the resulting natural convection that is driven by density variation. The transformer generates a constant heat flux and is incased in a sleeve with radial fins. At first, the sleeve is analyzed without fins and compared to an analytical solution in order to validate the numerical simulations. Next, fins are added to the sleeve in order to maximize the heat transfer from the transformer. Heat transfer from the sleeve per number of fins is to be determined. Small pins are then added …


Thermomagnetic Convective Cooling Of Hall Effect Thruster, Elizabeth M. Vanheusden Jan 2018

Thermomagnetic Convective Cooling Of Hall Effect Thruster, Elizabeth M. Vanheusden

Dissertations, Master's Theses and Master's Reports

This work proposes and shows that thermomagnetic convection could be used in zero gravity to cool components of a Hall-effect thruster. A ferrofluid cavity was develop in the thermal and geometric model of a Hall-effect thruster. Simulations show that with an Ionic Liquid Ferrofluid after two minutes of thruster operations thermomagnetic convection occurs and in zero gravity will produce a larger velocity then natural convection that occurs in earth gravity. However, experiments did not result in heat transfer enhancement due to the limitation of the ferrofluid. Replacement of the Ferrotec EFH1 dispersant with dodecylbenzene did not result in Ionic Liquid …


Improving Sensitivity Of Electrochemical Sensors With Convective Transport In Free-Standing, Carbon Nanotube Structures, Benjamin J. Brownlee, Kevin M. Marr, Jonathan C. Claussen, Brian D. Iverson Jan 2017

Improving Sensitivity Of Electrochemical Sensors With Convective Transport In Free-Standing, Carbon Nanotube Structures, Benjamin J. Brownlee, Kevin M. Marr, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

High-aspect-ratio, porous membrane of vertically-aligned carbon nanotubes (CNTs) were developed through a templated microfabrication approach for electrochemical sensing. Nanostructured platinum (Pt) catalyst was deposited onto the CNTs with a facile, electroless deposition method, resulting in a Pt-nanowire-coated, CNT sensor (PN-CNT). Convection mass transfer enhancement was shown to improve PN-CNT sensor performance in the non-enzymatic, amperometric sensing of hydrogen peroxide (H2O2). In particular, convective enhancement was achieved through the use of high surface area to fluid volume structures and concentration boundary layer confinement in a channel. Stir speed and sensor orientation especially influenced the measured current in …


Prosthetic Socket Cooling System, Benjamin K. Kraw, Kathy Ha, Derek Piastrelli, Cuong Lai Jun 2016

Prosthetic Socket Cooling System, Benjamin K. Kraw, Kathy Ha, Derek Piastrelli, Cuong Lai

Mechanical Engineering

A team of four senior-level undergraduate students in the Interdisciplinary Senior Project Design course in the Engineering Department of California Polytechnic State University: San Luis Obispo have worked to develop a prosthetic socket cooling system, namely for veteran Taylor Morris and exclusively for a transfemoral prosthetic socket, under the Quality of Life+ Laboratory. This cooling system will utilize the thermoelectric effect known as the Peltier effect to transmit heat generated from the residual limb to the surrounding environment by means of forced convection over small aluminum heat sinks. Two measurement devices have also been developed to, one, measure the heat …


Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby May 2016

Improved Modeling Of Atmospheric Entry For Meteors With Nose Radii Between 5cm And 10m, Jakob Dale Brisby

Masters Theses

Atmospheric entry studies typically look closely at the peak heating rate that a body encounters during its trajectory. This is an extremely important phenomenon to study because it allows engineers to determine if a trajectory is possible with given materials and craft design specifications. It also allows designers to choose what type of method will be used for mitigating the enormous heat fluxes during entry. In general, it is accepted that during the super-sonic flight regime the body will continue to be heated and an ablative heat shield often is used to deal with these heating processes. The theory outlined …


Entry Flow And Heat Transfer Of Laminar And Turbulent Forced Convection Of Nanofluids In A Pipe And A Channel, Yihe Huang Aug 2015

Entry Flow And Heat Transfer Of Laminar And Turbulent Forced Convection Of Nanofluids In A Pipe And A Channel, Yihe Huang

McKelvey School of Engineering Theses & Dissertations

This thesis presents a numerical investigation of laminar and turbulent fluid flow and convective heat transfer of nanofluids in the entrance and fully developed regions of flow in a channel and a pipe. In recent years, nanofluids have attracted attention as promising heat transfer fluids in many industrial processes due to their high thermal conductivity. Nanofluids consist of a suspension of nanometer-sized particles of higher thermal conductivity in a liquid such as water. The thermal conductivity of nanoparticles is typically an order-of-magnitude higher than the base liquid, which results in a significant increase in the thermal performance of the nanofluid …


Experimental Validation Data For Cfd Of Steady And Transient Mixed Convection On A Vertical Flat Plate, Blake W. Lance May 2015

Experimental Validation Data For Cfd Of Steady And Transient Mixed Convection On A Vertical Flat Plate, Blake W. Lance

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In this computer age, simulations are becoming common in science and engineering. One category of simulation, Computational Fluid Dynamics (CFD), begins with physical equations but adds approximations and calibrations in order to complete solutions. Translating these equations into computer languages may cause unintended errors. If simulation results are to be used for decision making, their accuracy needs to be assessed. This accuracy assessment is the theory behind the field of Verification & Validation.

Verification involves confirming the translation of physical equations to computer language was per- formed correctly. It also features methods to detect many types of code errors. Validation …


A Computational Fluid Dynamics Validation Experiment For Forced And Mixed Convection On A Vertical Heated Plate, Jeff Robert Harris May 2014

A Computational Fluid Dynamics Validation Experiment For Forced And Mixed Convection On A Vertical Heated Plate, Jeff Robert Harris

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A computational fluid dynamics (CFD) validation experiment is conducted for flow over a heated vertical plate. The design of the experiment to meet CFD validation standards is described. Many experiments and simulations have been completed in past studies, but none measure or present the necessary boundary conditions to define the simulation. Experimental measurements of heated flow are presented, along with corresponding boundary conditions sufficient to define the simulation's boundary conditions. Some simulation results are described, but a complete validation study is not included. The simulations are conducted by the experimentalist to ensure all necessary boundary conditions are being measured. This …


Analytical And Numerical Modeling Of Assembly Procedures Of Steel Fulcra Of Bascule Bridges, Sriharsha Garapati Jan 2013

Analytical And Numerical Modeling Of Assembly Procedures Of Steel Fulcra Of Bascule Bridges, Sriharsha Garapati

USF Tampa Graduate Theses and Dissertations

To model shrink-fitting in metal components, an analytical model for two long compound cylinders with temperature dependent material properties and interference between them is developed for calculating transient temperatures and stresses. A finite element model is developed for the same geometry which incorporated the temperature dependent material properties. A convergence study is performed on the finite element and analytical model. The finite element model is validated by comparing the approximations of finite element model with the analytical solution.

In an assembly procedure of fulcrums for bascule bridges, called AP1, the trunnion is shrink-fitted into a hub, followed by shrink fitting …


An Investigation Of The Effects Of Surfactant Monolayers On Natural Convection Heat Transfer And Evaporative Mass Transfer, Steven Bower Aug 2011

An Investigation Of The Effects Of Surfactant Monolayers On Natural Convection Heat Transfer And Evaporative Mass Transfer, Steven Bower

All Dissertations

Laboratory experiments are presented that reveal the effects of surfactant monolayers on natural convection heat transfer and evaporation from bodies of water; more specifically, the situation is studied where the bulk temperature of the water is greater than the temperature of the air so that evaporative convection occurs. Four sets of experiments were performed in a laboratory environment on insulated tanks of different widths and depths for the following surface conditions: 1) clean surface, 2) oleyl alcohol covered surface, 3) stearic acid covered surface, and 4) stearyl alcohol covered surface. An infrared (IR) camera was used to verify the existence …


Radiation And Convection Heat Transfer In Wildland Fire Environments, David J. Frankman Jul 2009

Radiation And Convection Heat Transfer In Wildland Fire Environments, David J. Frankman

Theses and Dissertations

Wildland fire research has been extensive and on going since before 1950. The motivation behind this research is to prevent loss of property and lives. In spite of this research, the heat transfer of fuel ignition and flame spread is not well understood. This dissertation seeks to fill gaps in this understanding through modeling and also by experimentation. The effect of water vapor on the transmission of thermal radiation from the flame to the fuel was investigated. The Spectral Line Weighted-sum-of-gray-gases approach was adopted for treating the spectral nature of the radiation. The study reveals that water vapor has only …


An Experiment On Integrated Thermal Management Using Metallic Foam, Derek M. Geiger May 2009

An Experiment On Integrated Thermal Management Using Metallic Foam, Derek M. Geiger

Master's Theses

This report details an approach to using metal foam heat exchangers inside an integrated thermal management system on a variable cycle engine. The propulsion system of interest is a variable cycle engine with an auxiliary, variable flow rate fan. The feasibility of utilizing an open-celled metallic foam heat exchanger in the ducting between the constant and variable-fans on this variable cycle engine to cool the avionics was explored using an experimental approach. Two heat exchangers, 6.3 inch width by 6.3 inch length by 0.5 inch thickness, were constructed from 20 and 40 pores per inch (PPI) metal foam and tested. …


Modeling And Control Of Re-Entry Heat Transfer Problem Using Neural Networks, Katie Grantham, Radhakant Padhi, S. N. Balakrishnan, Dwight C. Look Jan 2005

Modeling And Control Of Re-Entry Heat Transfer Problem Using Neural Networks, Katie Grantham, Radhakant Padhi, S. N. Balakrishnan, Dwight C. Look

Engineering Management and Systems Engineering Faculty Research & Creative Works

A nonlinear optimal re-entry temperature control problem is solved using single network adaptive critic (SNAC) technique. The nonlinear model developed and used accounts for conduction, convection and radiation at high temperature, represents the dynamics of heat transfer in a cooling fin for an object re-entering the earth's atmosphere. Simulation results demonstrate that the control synthesis technique presented is very effective in obtaining a desired temperature profile over a wide envelope of initial temperature distribution.


Thermally Developing Electro-Osmotic Convection In Circular Microchannels, Spencer L. Broderick Nov 2004

Thermally Developing Electro-Osmotic Convection In Circular Microchannels, Spencer L. Broderick

Theses and Dissertations

Thermally developing, electro-osmotically generated flow has been analyzed for a circular microtube under imposed constant wall temperature (CWT) and constant wall heat flux (CHF) boundary conditions. Established by a voltage potential gradient along the length of the microtube, the hydrodynamics of such a flow dictate either a slug flow velocity profile (under conditions of large tube radius-to-Debye length ratio, a/lambda_d) or a family of electro-osmotic flow (EOF) velocity profiles that depend on a/lambda_d. The imposed voltage gradient results in Joule heating in the fluid with an associated volumetric source of energy. For this scenario coupled with a slug flow velocity …


Liquid Immersion Cooling Of A Longitudinal Array Of Discrete Heat Sources In Protruding Substrates: I—Single-Phase Convection, Theodore J. Heindel, F. P. Incropera, S. Ramadhyani Mar 1992

Liquid Immersion Cooling Of A Longitudinal Array Of Discrete Heat Sources In Protruding Substrates: I—Single-Phase Convection, Theodore J. Heindel, F. P. Incropera, S. Ramadhyani

Theodore J. Heindel

Experiments have been performed using water and FC-77 to investigate heat transfer from an in-line 1 x 10 array of discrete heat sources, flush mounted to protruding substrates located on the bottom wall of a horizontal flow channel. The data encompass flow regimes ranging from mixed convection to laminar and turbulent forced convection. Buoyancy-induced secondary flows enhanced heat transfer at downstream heater locations and provided heat transfer coefficients comparable to upstream values. Upstream heating extended enhancement on the downstream heaters to larger Reynolds numbers. Higher Prandtl number fluids also extended heat transfer enhancement to larger Reynolds numbers, while a reduction …