Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Development, Modeling, Identification, And Control Of Tilt-Rotor Evtol Aircraft, Clayton T. Spencer May 2024

Development, Modeling, Identification, And Control Of Tilt-Rotor Evtol Aircraft, Clayton T. Spencer

All Graduate Theses and Dissertations, Fall 2023 to Present

This thesis includes the development, modeling, identification, and control of an electric-Vertical-Take-Off-and-Landing (eVTOL) aircraft with tiltable rotors. The front two rotors have tilting capability for transition flight from vertical-take-off to forward-level flight. This work details the development of an eVTOL aircraft and the selection of sub components such as electric motors, batteries, and controllers. After the aircraft build, mathematical model is derived to describe the motion of the aircraft. Unknown parameters in the mathematical model are identified using a Least-Squares-regression (LSR) method that can handle parameter constraints. This is done using real flight data collected from the aircraft. Lastly, this …


Applications Of Relative Motion Models Using Curvilinear Coordinate Frames, Alex C. Perez May 2017

Applications Of Relative Motion Models Using Curvilinear Coordinate Frames, Alex C. Perez

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A new angles-only initial relative orbit determination (IROD) algorithm is derived using three line-of-sight observations. This algorithm accomplishes this by taking a Singular Value Decomposition of a 6x6 matrix to arrive at an approximate initial relative orbit determination solution. This involves the approximate solution of 6 polynomial equations in 6 unknowns. An iterative improvement algorithm is also derived that provides the exact solution, to numerical precision, of the 6 polynomial equations in 6 unknowns. The initial relative orbit algorithm is also expanded for more than three line-of-sight observations with an iterative improvement algorithm for more than three line-of-sight observations. The …


Modified Trajectory Shaping Guidance For Autonomous Path Following Control Of Platooning Ground Vehicles, Ishmaal T. Erekson May 2016

Modified Trajectory Shaping Guidance For Autonomous Path Following Control Of Platooning Ground Vehicles, Ishmaal T. Erekson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis proposes a modification of trajectory shaping guidance to provide more accurate path convergence in curved paths. The object of this thesis is to apply this simple guidance law to platooning control to ensure all vehicles in the platoon converge to a desired constant radius path at a desired vehicle separation distance. To show the viability of this new guidance law, it is shown mathematically to be exponentially stable. It is also confirmed through simulations and on ground robots.


Optimization Of Torquer Coil Design For Use With The Small Satellite Attitude Control Simulator, David Deloyd Anderson May 1996

Optimization Of Torquer Coil Design For Use With The Small Satellite Attitude Control Simulator, David Deloyd Anderson

Undergraduate Honors Capstone Projects

This paper presents a procedure used to optimize the performance of a ferromagnetic core magnetic torquer coil design for use on the Space Dynamics Laboratory (Logan, UT) Small Satellite Attitude Control Simulator. The items of optimization include the primary goal of maximizing the coil 's magnetic moment while reducing power consumption and system mass within given power, mass, and dimensional constraints. The optimization process makes use of several simple equations to determine a few starting points for design, after which an iterative approach based on experimentation is used to produce the final design. It is found that optimal magnetic moment …