Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Gnygrens18.Pdf, Garrett Nygren Aug 2018

Gnygrens18.Pdf, Garrett Nygren

Garrett Nygren

The finite element method was used to evaluate microstructural strengthening and toughening effects in nanoparticulate reinforced polymer composites (nanocomposites) and in short aligned discontinuous fiber reinforced polymer composites. Nanoparticulate reinforcement is a well-known method of polymer toughening which can greatly expand the range of engineering applications for polymers. However, the mechanisms of nanoparticulate toughening, as well as complementary sub-micron fracture processes, are not well understood. Short, aligned, discontinuous carbon fiber reinforced thermoplastics show promise as a versatile, inexpensive material system with favorable manufacturability, but failure of the associated morphologies is also not yet well explored.
In nanocomposites, two microstructural effects …


Advances In Composite Manufacturing Of Helicopter Parts, Tobias A. Weber, Hans-Joachim K. Ruff-Stahl Jul 2018

Advances In Composite Manufacturing Of Helicopter Parts, Tobias A. Weber, Hans-Joachim K. Ruff-Stahl

Hans-Joachim Ruff-Stahl

This study investigates and compares different methods for improving standard autoclave composite manufacturing in order to find suitable approaches to a more efficient composite production. The goal is not only a reduction in manufacturing times and costs but also quality enhancement. Improved part quality while decreasing costs enables a manufacturer of composite parts to expand its market share, especially in the helicopter market, which has been constantly shrinking over the last two years. Various approaches such as improved tooling technology, the use of automated systems for lamination as well as outsourcing are examined to provide an overview of possible advancements …


Prove Endurance Car Front Suspension, Lauren A. Williams, Logan Simon, Justine G. Kwan Jun 2018

Prove Endurance Car Front Suspension, Lauren A. Williams, Logan Simon, Justine G. Kwan

Mechanical Engineering

This document details the collaborative Mechanical Engineering Senior Project with Cal Poly PROVE Lab on PROVE Lab’s Project 2; an electric vehicle designed to travel 1000 miles on a single charge. Logan Simon, Justine Kwan, and Lauren Williams are given the challenge of designing an innovative proof of concept front suspension suspension for this vehicle.

After detailed research of new suspension systems, it was determined that the innovative nature could be in the form of unique manufacturing methods, materials use, or mechanical design. At this point in time, this vehicle is a purely conceptual design with no concrete requirements. Therefore …


Numerical Evaluation Of Energy Release Rate At Material Interfaces For Fatigue Life Predictions, Robert L. Hendrickson May 2018

Numerical Evaluation Of Energy Release Rate At Material Interfaces For Fatigue Life Predictions, Robert L. Hendrickson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Composite materials are becoming popular in almost all industries. Carbon-fiber and glass-fiber composites are used in aircraft, sports equipment, boats, prosthetics, and wind turbine blades. In all these applications, the composites are subjected to different loads. Loads can take the form of impact or cyclic/fatigue loading, both of which decrease the strength of composites as micro-cracks grow through the composite. Composite laminates are made up of fiber plies (thin layers of fiber) and the fibers are surrounded by a resin like epoxy. It is common for laminates to fail because of delamination growth (plies peeling apart). Small delaminations do not …


Development Of Waste-Based-Thermoplastic Composite Heat Insulators, Waseem Yousef Hittini Apr 2018

Development Of Waste-Based-Thermoplastic Composite Heat Insulators, Waseem Yousef Hittini

Mechanical Engineering Theses

The main scope of this research is to develop polymer-filler thermal insulators utilizing natural and industrial local waste such as date pit powder (DPP), devulcanized tire rubber (DVR), and buffing dust (BD). Recycling and reuse of these local wastes as fillers in insulation materials has significant benefits for the UAE environment. An objective of this work was to study the effect of the combination of these local wastes with polystyrene (PS) on the physical, mechanical, and thermal properties of the developed thermal insulators. PS was used as a matrix, mixed in different proportions with the waste fillers. Each mixture was …


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured laminates compared …


Human-Robot Collaborative Force-Controlled Micro-Drilling For Advanced Manufacturing And Medical Applications, Parimal Mahesh Prajapati Jan 2018

Human-Robot Collaborative Force-Controlled Micro-Drilling For Advanced Manufacturing And Medical Applications, Parimal Mahesh Prajapati

Mechanical & Aerospace Engineering Theses & Dissertations

Robotic drilling finds applications in diverse fields ranging from advanced manufacturing to the medical industry. Recent advances in low-cost, and human-safe, collaborative robots (e.g., Sawyer) are enabling us to rethink the possibilities in which robots can be deployed for such tedious and time-consuming tasks. This thesis presents a robotic drilling methodology with features of force-control enabled micro-drilling and human-robot collaboration to reduce programming efforts and enhance drilling performance. A Sawyer robot from Rethink Robotics, which offers safe physical interactions with a human co-worker, kinesthetic teaching, and force control, is used as the test bed. The robot’s end-effector was equipped with …