Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Electromagnetic Interference Shielding Of Mwcnt/ Mu-Metal/Polyvinylidene Fluoride Nanocomposite, C. Sarala Rubi, S. Gowthaman, N. G. Renganathan Jul 2015

Electromagnetic Interference Shielding Of Mwcnt/ Mu-Metal/Polyvinylidene Fluoride Nanocomposite, C. Sarala Rubi, S. Gowthaman, N. G. Renganathan

Innovative Research Publications IRP India

Electromagnetic Interference (EMI) Shielding material containing a blend of multi walled carbon nano tube (MWCNT) and mumetal has been prepared and their electromagnetic shielding capabilities were characterised through XRD, SEM, EDAX, etc. The shielding effectiveness (SE) was measured using vector network analyser in X-band frequency range (8-12 GHz).


Effect Of Airfoil And Composite Layer Thicknesses On An Aerostructural Blade Optimization For Wind Turbines, Ryan Barrett, Ian Freeman, Andrew Ning Jul 2015

Effect Of Airfoil And Composite Layer Thicknesses On An Aerostructural Blade Optimization For Wind Turbines, Ryan Barrett, Ian Freeman, Andrew Ning

Faculty Publications

The purpose of this research is to enhance the performance of wind turbine blades by exploring the effect of adding airfoil and material layer thicknesses to the optimization design process. This is accomplished by performing an aerostructural blade optimization to minimize mass over annual energy production and thereby reduce the cost of energy. Changing airfoil thickness allows the airfoil shape to evolve as part of the optimization. The airfoil thicknesses are allowed to vary within two airfoil families, the TU-Delft and NACA 64-series, that are used in the NREL 5-MW reference turbine. Both experimental wind tunnel and computational data are …


Composite Snowmobile Suspension Assembly, Michael Villarma May 2015

Composite Snowmobile Suspension Assembly, Michael Villarma

Mechanical Engineering and Technology Senior Projects

Snowmobile technology is constantly evolving and incorporating new ideas into products for the consumer to enjoy. After market manufactures are competing among themselves for the top position in suspension technology, yet none have broken the boundaries and really pushed to the next level, until now. The objective of this design was to provide the consumer with a lightweight and simplistic suspension system that would meet the performance demands of the consumer market. In order to meet the strength to weight ratio requirements of this design, composites were implemented to provide the necessary structural strength for the overall system. A one …


An Extended Finite Element Method (Xfem) Study On The Effect Of Reinforcing Particles On The Crack Propagation Behavior In A Metal–Matrix Composite, Chang Ye, Jay Shi, Gary J. Cheng Apr 2015

An Extended Finite Element Method (Xfem) Study On The Effect Of Reinforcing Particles On The Crack Propagation Behavior In A Metal–Matrix Composite, Chang Ye, Jay Shi, Gary J. Cheng

Dr. Chang Ye

In this paper, the eXtended Finite Element Method (XFEM) was integrated in ABAQUS to simulate crack propagation and to predict the effect of reinforcing particles to the crack propagation behavior of Al2O3/Al6061 composite materials. It has been demonstrated that, higher reinforcing particle volume fraction leads to improved fatigue resistance and smaller particles size is more effective than larger particles at the same particle volume fraction. The underlying mechanisms of these effects are systematically investigated. The stress fields captured by XFEM during the crack propagation help in understanding the crack propagation behavior during cyclic loading.


Synthesis And Characterization Of Nano-Composite Lead-Free Solder, D. Lin, C. Kuo, T. Srivatsan, M. Petraroli, Guo-Xiang Wang Apr 2015

Synthesis And Characterization Of Nano-Composite Lead-Free Solder, D. Lin, C. Kuo, T. Srivatsan, M. Petraroli, Guo-Xiang Wang

Dr. Guo-Xiang Wang

A series of experiments conducted on a lead-free eutectic solder (Sn-3.5%Ag) have shown that addition of trace amounts of nanometer-sized particles does have an influence on mechanical properties of materials. In this study, three different types of nanoparticles (copper, nickel and iron) were chosen as the reinforcing candidate. For each particulate reinforcement the reflow process was performed under identical cooling conditions. Addition of trace amounts of nano-particles alters the kinetics governing solidification of the composite solder paste while concurrently exerting an influence on microstructural development, particularly the formation and presence of second phases in the solidified end product. The nano-sized …