Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Biaxial & Twist Testing Of Composite Carbon-Fiber Sandwich Panels For Automotive Racing Vehicles, Erik Eckberg Jun 2012

Biaxial & Twist Testing Of Composite Carbon-Fiber Sandwich Panels For Automotive Racing Vehicles, Erik Eckberg

Materials Engineering

Composite sandwich panels were constructed with 4-ply plain weave carbon-fiber/epoxy face sheets in the 0o/45o/0o/45o orientation and 1/8th inch Nomex honeycomb core. The panels were cut into 5-inch square test plates for mechanical testing. All testing was done on a fixture designed and fabricated by Pratt & Miller Engineering and installed on an Instron testing system at Cal Poly. The twist test was performed by supporting diagonal corners of the plate while simultaneously loading the opposite two corners at a crosshead rate of .06 in/min (ASTM 3044-94R11). Out of 10 panels tested, …


Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera Jun 2012

Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera

Mechanical Engineering

The following report encompasses the Human Powered Helicopter Rotor Team’s conceptual models and ideas based on research and modeling analysis. The following gives an overview of material researched, concept generation, analyzation, manufacturing, and testing for a rotor structure to be installed in a Human Powered Helicopter.


An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez Jun 2012

An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez

Master's Theses

This research studies the effects of a damage arrestment device embedded between a carbon fiber facesheet and foam core to find whether there is an increase in the structural integrity of the sandwich composites. Experimental and theoretical finite element analyses are implemented for two different composite sandwich geometries; plates and beams. Each structure consisted of the same loading criteria and was restricted to the same vibration fixture during the experiment. An accelerometer was placed on the composite plate to record the amplitude and the natural frequencies of the composite structure. Each composite specimen is then fixed to the surface of …


Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian May 2012

Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian

Master's Theses

An injection moldable chopped fiber composite actuator with detailed drawing and tolerances was designed within one year. A vendor was selected and a quote for injection molding tooling cost for production was obtained and the first prototype was built in addition of six months. The risks are identified and material characterization tests are proposed.

The objective of this project was redesigning an aluminum made actuator with a continuous fiber composite for weight saving purposes. After searching the literature and consulting with experts in the field it was concluded that manufacturing costs associated with continuous fiber composite are 3 times as …


Compressive Strength Of Continuous Fiber Unidirectional Composites, Ronald Thompson May 2012

Compressive Strength Of Continuous Fiber Unidirectional Composites, Ronald Thompson

All Dissertations

Dow and Rosen's work in 1965 formed an intellectual framework for compressive strength of unidirectional composites. Compressive strength was explained in terms of micro-buckling, in which filaments are beams on an elastic foundation. They made simplifying assumptions, with a two dimensional idealization and linearized material properties. This study builds on their model, recognizing that the shear mode of instability drives unidirectional compressive strength. As a necessary corollary, the predictive methods developed in this study emphasize correct representation of composite shear stiffness. Non-linear effects related to matrix material properties, fiber misalignment, three dimensional representation, and thermal prestrains are taken into account. …


Peridynamic Models For Dynamic Brittle Fracture, Wenke Hu Mar 2012

Peridynamic Models For Dynamic Brittle Fracture, Wenke Hu

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Damage and failure in composite materials under dynamic loading has been extensively studied in experiments for several decades. Composite materials exhibit various damage and failure patterns under different loading rates, such as splitting and branching. Classical models cannot directly be applied to problems with discontinuous fields. A new nonlocal continuum model, peridynamics, has been proposed with the goal of solving dynamic fracture problems.

The J-integral has the physical significance of energy flow into the crack tip region. We present a rigorous derivation for the formulation of the J-integral in peridynamics using the crack infinitesimal virtual extension approach. We …